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Abstract of �Function Tagging� by Don Blaheta, Ph.D., Brown University, May 2004.

Function tags are a context-sensitive annotation applied to words and phrases of
natural language text, marking their syntactic or semantic role within a larger ut-
terance. As researchers improve results on various other problems in �pure� natural
language processing (e.g part-of-speech tagging, parsing), those who work in the
more �applied� NLP �elds (e.g. question-answering, temporal analysis) are seeking
more powerful sorts of linguistic annotation as input for their own systems. Hence,
function tags.

In the �rst part of the thesis, I present the problem of function tagging: why
it is an interesting problem, who has worked on similar thing, and what exactly I
intend to do. I brie�y review the function tags of the Penn treebank, and explain
the speci�c metrics by which I will evaluate my work.

In the second part of the thesis, I introduce the many features that I will use
to train a function tagging system, and then I present some systems that make
use of them: one using feature trees, one using decision trees (brie�y), and one
using perceptron models. For each system, I give a brief historical perspective, an
overview of where it has been used before and why I think it will be useful in this
task. I will then try a number of feature combinations with interesting properties;
and �nally, present the best-performing tweaked-out version of that system.

Finally, in the third part of the thesis, I bring them all together and discuss
the advantages and disadvantages of each system in various situations. More inter-
estingly, I will present an analysis of what features prove to be the most helpful for
the di�erent function tagging subtasks. Lastly, I will present a comparison to other
systems performing related tasks, and speculate on some interesting future work.
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Chapter 1

Introduction

As the state of the art in Natural Language Processing advances, we have seen progressively higher
levels of annotation made available. On top of part-of-speech tags, which we've been fairly good at
for a while now, we have seen parse structure and phrase labels; the next natural step is to mark
the role each of these phrases plays in the overall utterance�with function tags.

Like the other forms of annotation, function tagging is not to be seen as an end in and of itself.
Knowing that a given phrase is, say, the topic of a sentence, or a locative modi�er, is not likely to
be useful or interesting to the typical end user. However, this information is important as a tool
for other natural language applications. A dialogue system could certainly make use of information
about marked topics. Question answering systems can make use of semantic tags to note that
�where� questions will be answered by locative or directional phrases, �when� by temporal, and so
on. Machine translation systems can make use of nearly all of the function tags to re�ne alignments
(as the subject of a sentence will nearly always align with the subject of a parallel sentence in another
language) as well as for generation (as the case of a noun phrase will often have a direct relationship
to its syntactic or semantic function tag: subect? location? manner/instrument?)

Researchers at the University of Pennsylvania have given us the Penn Treebank, and begin-
ning with the second edition of that corpus, they have included function tag information therein.
This thesis will investigate some methods for using this corpus�already heavily mined for parsing
applications�to train a system to mark parsed text with the Penn function tags.

Inevitably, some portions of the task are easier than others. In easier cases, a function tagger can
determine its prediction based just on the local structure of the parse, with just one or two phrase
labels��at a glance�, one might say. The tricky part of function tagging comes when distinguishing
phrases of the same structure that di�er by just one word�for instance, telling `in Budapest', which
is locative, from `in April', which is temporal. There are many cases where a single preposition can
give rise to two or three di�erent function tags; the word `by' is associated with �ve. In the following
sentences, only the objects of the preposition di�er:

The volume was turned up by John (LGS)
1
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by 30 dB (EXT)
by the DJ table (LOC)
by a twist of the knob (MNR)
by 11pm (TMP)

That object is even always a noun phrase, and yet the �ve cases receive �ve di�erent tags. As we
shall see, it is cases like this�where lexical information is needed to distinguish possible tags�that
will be hardest for a function tagging system to process. Nevertheless, the problem is not intractable.
In the ensuing chapters, we will show that certain types of system are capable of attaining relatively
high accuracy�over 98% on syntactic tags and 80% on the (harder) semantic tags.



Chapter 2

Function tags

We think it will be useful to begin by formally de�ning the term that titles the thesis:
A function tag is an annotation, chosen from a relatively small, discrete set of possible
annotations, that is placed on a phrase to indicate that phrase's relationship to the rest
of the utterance that contains it.

Note that this de�nition is not meant to include the basic syntactic category of a phrase, such as
�noun phrase� or �subordinate clause�; these terms (which we will refer to as labels) indicate where a
given batch of words might be able to go. A function tag indicates speci�cally how a given batch of
words in context relates to its neighbours and the rest of the sentence. While a syntactic label can
often be assigned with some con�dence to a phrase out of context, a function tag usually cannot.
One can look at the phrase �the stock market� and immediately label it a noun phrase, but its
function might well be as a subject:

The stock market closed early today.
Or a direct object:

Investment bankers monitor the stock market carefully.
Or as the agent in a passive construction:

Alex was always fascinated by the stock market.
Or perhaps as something else entirely.

Function tags may be basically syntactic in nature (as with those in the previous paragraph), but
they may also have a more semantic component. When annotating adjuncts, in particular, it makes
sense to mark what type of modi�cation is being performed, e.g. time, location, or manner. Other
function tags are surely possible (pragmatics, discourse structure, etc.), but in this work we focus
primarily on syntactic and semantic function tags, as these comprise the majority of the function
tags in the Penn Treebank, the corpus with which we will be working.

3
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ADV Non-speci�c adverbial
BNF Benefactive
CLF It-cleft
CLR `Closely related'
DIR Direction
DTV Dative
EXT Extent
HLN Headline
LGS Logical subject
LOC Location

MNR Manner
NOM Nominal
PRD Predicate
PRP Purpose
PUT Locative complement of `put'
SBJ Subject
TMP Temporal
TPC Topic
TTL Title
VOC Vocative

Figure 2.1: Penn treebank function tags

2.1 The Penn Treebank II function tag set

The Penn Treebank II (Marcus et al., 1995) is a corpus of hand-annotated text that includes part-
of-speech tags, full sentence parses (including empty nodes and movement annotation), and function
tags.1 We have used the Wall Street Journal portion of that corpus, which is approximately one
million words of text from that publication (from 1989), and for the remainder of this work will use
the word �treebank� to refer to this WSJ portion of the Penn Treebank II, except where noted.

The Treebank II bracketing guidelines identify twenty function tags for annotators to use, as listed
in Figure 2.1. A brief description of each can be found in Appendix A; more complete documentation
can be found in the corpus annotation guidelines (Bies et al., 1995).

Careful consideration of the guidelines and the corpus itself suggested a fairly natural division
of the function tags into four sets of mutually exclusive tags, shown in Figure 2.2 on the facing
page. They roughly correspond to categories set out in the guidelines, with some variations. The
�syntactic� category is largely untouched, except that Topicalisation (TPC) was removed; that tag
can co-occur with various other syntactic tags. The so-called �form/function discrepancy� category,
which included the Adverbial (ADV) and Nominal (NOM) tags, was merged in with the �adverbial�
category to form our �semantic� category: though ADV and NOM share some properties with the
syntactic tags, NOM does sometimes co-occur with some of the syntactic tags; hence it cannot share
a category with them, due to the mutual exclusivity criterion. Thus, the four function tag categories
we will be using throughout this work: Syntactic, Semantic, Topicalisation, and Miscellaneous.2 Any
given constituent will have at most one function tag per category.3 In actual practice, constituents
with tags from all four categories do not occur, although some have tags from three categories
(rarely).

Also in Figure 2.2 are the number of times each tag occurs in Section 24 of the treebank (the
1It is available from the Linguistic Data Consortium as Catalogue No. LDC95T7; see
http://www.ldc.upenn.edu/Catalog/ for more details.

2In earlier publications we used the terms `Grammatical' and `Form/function' for Syntactic and Semantic, respec-
tively.

3There is a single exception in the treebank: one constituent is tagged -LOC-MNR, but this appears to be an error.
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Occurrences in �24 Withincategory Total
All nonterminals 27075
Syntactic 3066 100.00% 11.32%

DTV 15 0.49% 0.06%
LGS 98 3.20% 0.36%
PRD 606 19.77% 2.24%
PUT 11 0.36% 0.04%
SBJ 2333 76.09% 8.62%
VOC 3 0.10% 0.01%

Semantic 2050 100.00% 7.57%
ADV 206 10.05% 0.76%
BNF 1 0.05% 0.00%
DIR 123 6.00% 0.45%
EXT 52 2.54% 0.19%
LOC 584 28.49% 2.16%
MNR 110 5.37% 0.41%
NOM 131 6.39% 0.48%
PRP 105 5.12% 0.39%
TMP 738 36.00% 2.73%

Topicalisation (TPC) 119 100.00% 0.44%
Miscellaneous 35 100.00% 0.13%

CLF 1 2.86% 0.00%
HLN 11 31.43% 0.04%
TTL 23 65.71% 0.08%

Figure 2.2: Categories of function tags and their relative frequencies

�development corpus�; see below), along with frequencies. The �rst percentage on each line repre-
sents, of those constituents tagged with some tag in this category, how many are tagged with this
particular tag. The second percentage is out of all nonterminal constituents.

2.1.1 The curious case of the CLR tag
One of the function tags to be found in the Penn treebank is CLR, which stands for �Closely Re-
lated�. The bracketing guidelines say that this tag �marks constituents that occupy some middle
ground between argument and adjunct of the verb phrase.� Their main role seems to be in marking
di�erent varieties of phrasal verb, such as `rely on' or `put up with'. This is an interesting linguistic
phenomenon, and useful to mark.

Unfortunately, it is not exactly a binary phenomenon; the degree to which a verb and some
other constituent are phrasal, or �closely related�, often lies very much in the eye of the beholder.
Even a casual perusal of the development corpus will reveal a few CLR constituents that seem like
they shouldn't be, and a large number that aren't but seem like they should be. Every reader,
furthermore, will put di�erent constituents in these two sets.
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In earlier iterations of this work, we put the CLR tag into the fourth, �miscellaneous� category
of function tags. At some 603 such tags in the development corpus, it was by far the dominant
member of that category. We recently discovered, however, that its original purpose was to �relieve
annotator frustration�4: it seems that the annotators saw the phrasal verb phenomenon and wished
to mark it. The decision was thus made to create the tag, tell the annotators to �use it however you
want�; and then, before compiling the corpus, the distributors were �supposed to strip out the CLR
tag.� This never happened, of course.

We have thus stopped training, testing, or reporting results on the CLR tag, and restricted the
fourth category to its other three, much rarer, members.

2.2 Other types of function tags

To our knowledge, there has been no previous attempt at recovering the Penn treebank function
tags, as such. There have, however, been a number of projects to annotate some other sorts of
function tags.

2.2.1 Collins (1997): complement marking
Collins (1997) approaches the problem of distinguishing adjuncts from complements. The motivation
here was to add some useful syntactic information and to improve parser performance�by guessing
complement status during the parse, the statistics were made a bit cleaner. This paper de�nes a
`complement' tag, derived from a combination of syntactic label and Penn-style function tag. This
boolean condition is then used to train an improved parser.

The system uses a generative model to evaluate parse quality, and the complement information
is used as follows. After generating the head-containing child of a constituent (conditioned on the
constituent and its head word), left and right subcategorisation frames are chosen conditional on
that head-containing child (and the previously-used conditioning information). A subcategorisation
frame is simply a bag of labels that are subcategorised by the parent�that is, these labels represent
constituents that are complement to the parent constituent. Given the subcategorised frame, then,
and all the previous conditioning information, the actual labels of the other children are generated.
Collins does not report his results on the complement tagging, but reports that using the complement
information improves his parser's accuracy by 0.6%.

2.2.2 NEGRA (1997): `grammatical function tags'
The NEGRA corpus (Uszkoreit and others, 1997) addresses the problem of building a German-
language treebank at various levels of automation. Like the Penn WSJ treebank project, NEGRA
begins with newspaper text (from the Frankfurter Rundschau), which is then POS-tagged, parsed,
and function-tagged. The grammar used is a dependency-style grammar, and hence allows for

4Mitch Marcus, p.c., 7 July 2002
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NEGRA Penn
Word POS tags 54 36
Punctuation POS tags 3 9
Base phrasal labels 15 27
Coordination phrase labels 10 35
Function tags 45 20

Table 2.1: A comparison between the NEGRA tagset and Penn's

numerous discontinuous constituents (appropriate for a language like German). Unlike the Penn
treebank, this corpus has a function tag on every constituent except the root node, but including
the terminals, representing the nature of the dependency between the constituent and its `parent'.
Some of the function tags are direct analogues of Penn function tags, like SB `subject'; others, such
as HD `head' or OA `accusative object' are not marked in the Penn treebank. Overall, the two
tagsets are comparable, though NEGRA is more �ne-grained on words and function tags, while less
�ne-grained on phrasal labels. See Table 2.1 for a full comparison of the number of tags or labels in
each group.

Brants et al. (1997) developed a system to function tag according to this tagset, using Markov
models. Their system and their results will be discussed in Section 7.3.2.

2.2.3 Carroll, Briscoe, and San�lippo (1998): `grammatical relations'
Carroll et al. (1998) develop a system of �grammatical relations� (GRs) that are intended primarily
for use as an evaluation metric. It includes a hierarchy of grammatical function tags (arg subsumes
subj, for instance); each of the 20 tags has arguments denoting, typically, what we would call the
head, the parent's head, and the alt head of the tagged constituent. Since this system is designed
as an evaluation metric for shallow parsing systems, these arguments serve to anchor the function
tags to certain parts of the sentence in the absence of a full dependency or phrase-structure tree.

Carroll et al. note speci�cally that they �are not advocating [the GRs'] use as a parser output
representation for use in application tasks,� but rather that they are to be �an evaluation method
that measures relative correctness of parser analyses with respect to a standard representation that
is well-de�ned and both system- and task-independent.� However, this betrays their bias towards
wholly or partially hand-built grammars (as, for instance, (Carroll and Briscoe, 2001)). In such a
grammar, it is possible to introduce these GRs as part of the parse structure, so that any time a
given rule is used, a certain GR is deterministically chosen to go with it.

However, in a parser induced entirely from a training corpus, or even a parser hand-built without
the GR evaluation metric in mind, application of the GR tags is itself a task with an imperfect success
rate. A perfect example of this can be seen in the parser comparison work in (Preiss, 2003). Preiss
uses the GR metric to compare the statistical parsers of Charniak (2000) and Collins (1997) with

5These are not in the base Penn tagset, but are used to some advantage both in parsing and function tagging; see
Section 3.2.2.



8

a uni�cation-based parser and a shallow parser. The statistical parsers, not designed to extract
these GR tags, su�ered in the evaluation: a hand-built GR extractor was run on top of them, and
this extractor was not perfect. For example, the performance of Charniak's parser on the ncsubj
tag�which we would call SBJ�is given as 82% precision and 70% recall. Since this is the same
parser we use in our work, we know that, with the right training, it can do considerably better.

Ultimately, of course, what this means is that the so-called GR parser -evaluation metric is really
getting at something di�erent than what the statistical parsing community usually means by �parser
evaluation�; it is really an evaluation of a function tagger, or rather of the parser+function-tagger
combination. It is also not so system-independent as it claims: it is really just another function tag
set, and comparing performance of GR-based parser/taggers with performance of Penn Treebank
parser/taggers has all the pitfalls of any comparison between multiple tagsets�some tags in each
set have no analogues in the other, and some tags in each set correspond to multiple tags in the
other. We will return to this problem in Chapter 7, when we compare the performance of various
systems.

2.2.4 FrameNet (1998): `frame elements'

Baker et al. (1998) introduce a slightly di�erent sort of function tagging for their FrameNet corpus.
Here, the function tags available for tagging a given phrase depend on the predicate frame the
phrase is participating in. Rather than a single `subject' tag, there would be a `speaker' tag for the
`statement' frame, a `cognizer' tag for the `judgement' frame, and so on. The corpus contains about
50,000 sentences hand-tagged with just these function tags (no syntactic structure).

The style of this type of function tag is very di�erent from the others we have mentioned.
There are thirteen di�erent domains, such as �communication� and �transaction�, each of which has
numerous frames, such as �conversation�, �statement�, and �judgement�. Every frame, then, has its
own three to six frame element tags that are shared only by the words within that frame. There
are thus many, many more potential tags available in this system, but it is a bounded set; and more
importantly, for any given frame the number of di�erent possibilities is small. Thus we do consider
this to be another type of function tag.

Gildea and Jurafsky (2002) have constructed a mapping from the frame element tags into a
more abstract set of eighteen `thematic roles', which correspond much more closely to the notion of
`function tags' developed in this work; their results both on the original set and on this reduced set
will be discussed in Section 7.3.4.

2.2.5 Böhmová, Haji£, Haji£ová, and Hladká (2000): `functors'

In the Prague Dependency Treebank (Böhmová et al., in press), there three layers of annotation that
(loosely) correspond to the Penn treebank's part-of-speech tagging, parse structures, and function
tags. This highest layer is known as the `tectogrammatical' layer in the PDT, and is considerably
more involved than the Penn treebank's function tags: function words (prepositions, auxiliary verbs)
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and punctuation are deleted and sentences are reordered as well. But part of the annotation in this
layer is a set of 47 `functors' that indicate the relationship between a dependent and its parent�in
other words, function tags.

With 47 of them, of course, the annotation is somewhat �ner-grained. Our TMP tag is split into
TWHEN, THL, and a few others, to distinguish the �when� modi�ers from the �how long� modi�ers,
the �since when� modi�ers, the �until when� modi�ers, and so on. Others, such as MANN, map
directly back to one of the Penn tags (MNR). In some cases, there is a many-to-many mapping: ACT
denotes the `actor' or `deep subject' and PAT the `patient'; which one maps to our SBJ will depend
on the sentence (and ACT will sometimes map to our LGS `logical subject' as well). Ultimately,
though, the main thrust is the same, and this function tag set may be the most similar to the Penn
tags of all the ones we have reviewed here.

2.3 Uses for function tags

This section is still largely speculative; as most of the function tagging work has been fairly recent,
researchers who might apply it to other NLP tasks have only just begun to try. Based on a number
of personal conversations at recent conferences, however, it seems like many researchers in the �eld
are excited about the prospects. Just a few of the things we (and they) think that function tags
might help with:

Dialogue systems. Any system that performs high-level sentence understanding, really; the (Preiss,
2003) paper shows that even with an accurate parse, as that output by the Charniak parser,
an ad hoc algorithm for extracting even basic syntactic relationships has insu�cient coverage.
A function-tagged parse should have the information needed to get a good syntactic reading
of the sentence. The topicalisation tag in particular seems like it would be handy for dialogue
systems, and possibly for anaphora resolution.

Question answering. In general, any sort of information retrieval might bene�t from a look at the
semantic tags; queries of �when� and �how long� are likely to be answered with a constituent
marked with a temporal tag, queries of �why� with a purpose constituent, �where� with a
location, and so on.

Machine translation. Function tags would assist in a number of places in the MT process, we
think. When translating prepositions, many times there is a di�erent translation according to
the sense of the preposition�which is often captured by a function tag. For languages with
many cases, the case often encodes similar information to the function tag, and thus having
function tag information on either the source or the destination language might be helpful.
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(with-null) Accuracy =
correctly tagged + correctly non-tagged

all nonterminal constituents
Precision =

correctly tagged
tagged by tagger

Recall =
correctly tagged

tagged in gold standard
F-measure =

2× Precision× Recall
Precision + Recall

Figure 2.3: Measures of accuracy

2.4 Evaluating performance on the task

We can imagine a number of di�erent metrics for determining the correctness of a function tagging.
The de�nition we chose is to say a constituent had been correctly function tagged if there exists
in the correct parse a constituent with the same start and end points, label, and function tag (or
lack thereof). Since we treated each of the four function tag categories as a separate feature for the
purpose of tagging, evaluation was also done on a per-category basis.

The denominator of any accuracy measure should be the maximum possible number we could get
correct. In this case, that means excluding those constituents that were already wrong in the parser
output; the parser we used (Charniak, 2000), for example attains 89% labelled precision-recall, which
means that roughly 11% of the constituents are excluded from the function tag accuracy evaluation.
(For reference, we will in several cases also include the performance of our function tagger directly
on treebank parses; it turns out not to matter much, and we will discuss the di�erences as we come
to them.)

Another consideration is whether to count non-tagged constituents in our evaluation. Internally,
we treat the lack of a tag as the presence of a null tag, so it might make sense to have an overall
accuracy measure that includes all constituents in the denominator and all correctly-tagged and
correctly-non-tagged constituents in the numerator. However, because the majority of Penn treebank
constituents have no tag, in most reasonable situations this would unreasonably in�ate the numbers.
We will report this `with-null accuracy' number in a few cases, but for the most part we will just
omit it. (Note, though, that for function tag systems like that in (Brants et al., 1997), where there
is no null tag, a single accuracy evaluation such as this one is all that is required.)

A much better measure of performance is to just consider those constituents that have some
function tag on them. Of course, the number of tagged constituents in the tagger output is likely
to be di�erent from that in the gold standard, so we report two numbers. The precision is, of the
number the tagger guesses, how many it gets correct. This measure is the opposite of the false
positive rate. The recall is, of the number in the gold standard, i.e. the number it could have gotten,
how many did the tagger �nd. This, then, is the opposite of the false negative rate. Both these are
shown in Figure 2.3.
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The last item in that �gure is the F-measure, which is a sort of average of the other two.
Speci�cally, it is the harmonic mean, which can also be written as

2
F

=
1
P

+
1
R

.

Its use within the AI and machine learning communities is designed to penalise widely divergent
precision/recall values. If two values are close, then their harmonic mean will be close to halfway
between them; if they are far apart, it will be much closer to the lower of the two. We might imagine
a system that spent a huge amount of e�ort to discover just one tag with maximum con�dence, and
then left everything else untagged; such a system would have 100% precision but nearly 0% recall,
and hence its F-measure would be, not 50%, but nearly 0%. Some versions of the F-measure give
an α scaling factor to lend more weight to either the precision or the recall, but we will be using
this evenly-weighted formula.

But what exactly is the input to our algorithm? We will be assuming that we have the syntactic
structure of a sentence available to us, so we will need parse trees. In the testing, then, it would
be easy to simply take the Penn treebank trees, function tag them, and compare them to the hand-
annotated versions. However, this is not the most realistic metric, at least not by itself. When
a function tagger is actually used, its input will need to come from a parser, and the input will
therefore not be perfect. It makes sense, then, to use the output of a high-quality machine parser,
rather than the gold-standard parses.

On the other hand, if we aren't careful, this could impose an arti�cial ceiling on our results.
That is, if we take for our denominator the total number of function tagged constituents, and we
use a parser that has 90% accuracy, the best we can hope to do with our function tagger is just
90%. Generally, then, we will take for our denominator the number of function-tagged constituents
that have been parsed correctly in the input. This does give our algorithm a theoretical maximum
performance of 100%. (Why not just go back to the gold standard parse, then, if we throw out all the
bad constituents anyway? It turns out to make a di�erence, which will be discussed in Chapter 7.)

While we are testing large numbers of systems on the development corpus, we will sometimes
use the gold standard input and sometimes the machine-parsed, as convenient, but the �nal results
will be reported for machine-parsed input, with the bad constituents thrown out. In order to better
compare against certain other systems, in Chapter 7, we will also give estimated numbers for our
performance including those bad constituents, though as we will explain there, this is really more of
a lower bound.

Having established our evaluation schema, we now turn to one of the basic concepts underlying
all the systems we will be testing.



12



Chapter 3

Features

A feature is nothing more than a question that can be asked. The sorts of features that we are
interested in are features of sentence constituents, and tend to be questions like �what is the label of
this constituent?� or �what word is the head of the parent of this constituent?� or something along
those lines.

Use of the word `feature' in approximately this sense was in use by the mid-90s; it is used thus
in (Magerman, 1995) and (Berger et al., 1996), but is in any case now standard within the NLP
community for maximum entropy models and some other applications. Older papers on maximum
entropy (Jaynes, 1957; Guia³u and Shenitzer, 1985) just use the term `function', and papers on
perceptron models tend not to talk about the individual features at all, referring to them in aggregate.
We will nevertheless use the term throughout, for consistency.

3.1 Binary vs. multivalued features

Strictly speaking, the algorithms we will be using require that a feature be binary; that is, a yes/no
question. Internally, the answer to the question�the value of the feature�will be interpreted
numerically, and thus using multivalued features would give rise to strange notions like S being
�twice as much as� VBN, whatever that might mean.

However, we can emulate multi-valued features using binary features. Each multi-valued feature
with n possible values is emulated with n binary features, of which exactly one has the value 1 and
the rest 0. For example, a feature like �what is the label of this constituent?� is changed to the
sequence of features �is the label of this constituent NP?�, �is the label of this constituent S?�, and
so on.

Conceptually, however, it is very useful to talk in terms of the multi-valued features, and hence
we will abuse the terminology slightly and use `feature' to refer sometimes to multi-valued and
sometimes to binary features; the context should generally disambiguate.

13
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3.2 Some possibly useful features

In this section we describe the features we will be using in our systems in Chapters 4 and 6.

3.2.1 Label

The �rst and most obvious feature to make use of is the label of the constituent. Particularly for
the syntactic tags, this is probably the single most important feature; a VP is essentially never going
to get any of the syntactic tags, an ADJP is unlikely to be anything other than a PRD (or nothing),
and the only function tag that really gets applied to PP constituents is PUT (and that only rarely).

3.2.2 cc-Label

This feature normally is identical to the regular Label feature; but if a phrase is comprised of the
conjunction of two or more noun phrases, rather than giving the true label NP for the whole phrase,
this feature will give a special label CCNP to the phrase. Similarly for verb phrases (CCVP), and for
clauses (CCS).

Knowing the value of this feature for the parent of a given constituent was shown in (Charniak,
2000) to be useful for parsing, so we decided to try it on function tags as well.

3.2.3 Head

Every linguistic phrase has one word, the head, that can be described as the �most important� word
in that phrase, syntactically speaking. In a dependency grammar, the head is the word from which
all the other words in a phrase ultimately depend. In a categorial grammar, the head-containing
portion of a phrase is the functor, and to �nd the head we can recursively descend through the
functors until we reach a single word. The idea is that all but one of the words in any given phrase
is either an adjunct or a complement to some other word within that phrase; the one exception is
the head of the phrase, which is adjunct or complement to some other word outside the phrase.

The head has de�nitely proven useful in parsing; David Magerman's work (1995) using lexical
information showed improvement over the existing state of the art, and Michael Collins (1996) showed
that substantial improvement�on the order of 9%�could be attributed to head information alone.
So, too, with function tags. The constituent label is not nearly �ne-grained enough to distinguish
many of the di�erent function tag cases; for instance, nearly all of the semantic tags regularly occur
on prepositional phrases. Without some amount of lexical information, the problem is hopeless.

Within the linguistic formalism of the Penn treebank (such as it is), the marking of the head
is not inherent to the parse structure. As a result, we need an algorithm to determine the head of
any given parsed phrase. The algorithm used by the Charniak parser, and by the function taggers
presented here, is shown in broad pseudocode in Figure 3.1 on the next page. The functions goodHead
and okayHead return sets of constituents that can be head-containing children, and are de�ned in
Figure 3.2. The algorithm does not actually return the head of the constituent t, but rather the
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�ndHeadContainingChild (t)
if ∃c ∈ children(t) s.t. label(c) ∈ goodHead(label(t))

if label(t) = PP
return leftmost such c

else
return rightmost such c

else if ∃c ∈ children(t) s.t. label(c) = label(t)
return leftmost such c

else if ∃c ∈ children(t) s.t. label(c) ∈ okayHead(label(t))
return rightmost such c

(* we're in a strange constituent; back o� as best we can *)
else if ∃c ∈ children(t) s.t. terminal(c) & ¬ punctuation(c)

return rightmost such c
else if ∃c ∈ children(t) s.t. ¬ terminal(c) & label(c) 6= PP

return rightmost such c
else if ∃c ∈ children(t) s.t. label(c) = PP

return rightmost such c
else

return rightmost c ∈ children(t)

Figure 3.1: Head-�nding algorithm

goodHead:
ADJP⇒ JJ JJR JJS
ADVP⇒RB RBB
LST⇒ LS
NAC⇒NNS NN PRP NNPS NNP
NX⇒NNS NN PRP NNPS NNP
NP⇒NNS NN PRP NNPS NNP $ POS
PP⇒ IN TO RP

PRT⇒RP
S⇒VP
S1⇒S

SBAR⇒ IN WHNP
SBARQ⇒SQ VP

SINV⇒VP
SQ⇒MD
VP⇒VB VBZ VBP VBG VBN VBD TO MD

WHADJP⇒WRB
WHADVP⇒WRB

WHNP⇒WP WDT WP$
WHPP⇒ IN TO

okayHead:
ADJP⇒VBN RB
NAC⇒NP CD FW ADJP JJ
NX⇒NP CD FW ADJP JJ
NP⇒CD ADJP JJ NX
QP⇒ $ NN
S⇒SINV SBARQ X

PRT⇒RB IN
SBAR⇒WHADJP WHADVP WHPP

SBARQ⇒S SINV X
SINV⇒SBAR
SQ⇒VP

Figure 3.2: Which constituent types make good heads vs. tolerable heads
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head-containing child; the head of t is then recursively de�ned as the head of t's head-containing
child.

3.2.4 Head part-of-speech (POS)

Sometimes the head proves to be a little too �ne-grained. Eugene Charniak (2000) showed that for
the parsing problem, a small but signi�cant improvement�about 2%�could be achieved by using
the part-of-speech of the head as a backo� feature for when the head itself was unknown or rare.

3.2.5 Alt head

The semantic function tags are largely applied to prepositional phrases; and those phrases are not
easily distinguished solely by their head. The preposition `in' could head a temporal phrase, or a
locative one; `to' could indicate a direction, or a purpose. In order to properly tell these cases apart,
we really need access to the object of the preposition. The `alt head' grants us this access: it is
the head of the object of a prepositional phrase (and unde�ned for other sorts of constituents). We
hoped for a great deal of improvement on the semantic tags due to this feature.

In fact, this could be thought of as a speci�c example of the lexical-functional head distinc-
tion(Grimshaw, 1990)��alt heads� being speci�cally the lexical heads of prepositional phrases. We
did not implement the more general �lexical head� feature.

3.2.6 Alt head POS

While the alt head's part of speech won't help much in distinguishing `in Chicago' from `in March',
it might give us some assistance with `to Chicago' and `to win'.

3.2.7 Function tags

The function tags are themselves features, of course. Obviously we cannot use a function tag as a
feature for guessing itself, but it's quite possible that using one category of function tag may help
us in the prediction of another. For instance, subjects are rather unlikely to be modi�ers of time,
place, or anything else; and a PP marked with a semantic tag is unlikely to contain a logical subject
(LGS).

3.2.8 Label clusters

Data for labels like NP can often be found without much di�culty, but some types of constituent
are considerably less frequent, such as WHNP. In some contexts, these less frequent constituents
will act just like their more common relatives. Furthermore, at the POS tag level, there are often
multiple tags to represent some syntactic or morphological distinction that may not be relevant for
our purposes. And �nally, the linguistic formalism in use for the Penn treebank has disjoint label sets
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ADJP JJ JJR JJS WHADJP
NP NN NNS NNP NNPS NX WHNP
ADVP RB RBR RBS RP WRB PRT WHADVP
VB VBD VBG VBN VBP VBZ
S SBAR SBARQ SINV SQ

IN TO
DT WDT
PRP WP
PRP$ WP$

CONJP CC
INTJ UH
LST LS
PP WHPP

Figure 3.3: Label clusters

for nonterminals (phrases) and terminals (words); yet there is often a strong correspondence between
a phrasal label and one or more POS tags (as with ADJP (adjectival phrase) and JJ (adjective)).

To address these observations, we have manually created a number of label clusters, to collapse
distinctions that may not be relevant in all cases. These clusters are shown in Figure 3.3. (Those
labels not listed are each in their own, singleton, cluster.) We hope that inclusion of the label cluster
feature will increase performance on the function tagging task in cases of sparse data. A secondary
hope is that replacing the label feature with the label cluster will maintain equivalent performance,
at least in certain cases, making the algorithm more general.

3.2.9 Word clusters
The worst of the sparse data problems are engendered by individual lexical items themselves; with
nearly 40,000 words it is simply not possible to have solid data on all of them in all contexts. Rather
than just ignoring the rare words entirely, though, it seems like it would be useful to group them
to fend o� the sparse data problems. We ran an algorithm to group all words with a given part of
speech into a relatively small number of clusters, each of which had a unique identi�er; this identi�er
is then the value of this word cluster feature.

3.3 Making use of relatives

Each of the features listed in the previous section can apply not only to the constituent being tagged,
but also to its various relatives, since we accept parsed sentences as input to our systems. The most
useful relative will obviously be the parent, but we also included features of the grandparent and
both adjacent siblings, as well as some features of more distant siblings. Di�erent such features will
be useful in di�erent situations: the parent will come in handy for tags like LGS, where the parent
needs to be a prepositional phrase headed by `by', while the right sibling may play an important
role in choosing whether a constituent is the SBJ (subject), since there can often be multiple noun
phrases sibling to the verb phrase in a sentence, in appositive or modi�cational constructions, and
they can be partially distinguished by their linear positioning in the sentence (relative to each other,
to commas, and to the verb phrase).
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Chapter 4

Feature trees

In this chapter we will describe the basic algorithmic mechanisms introduced in Charniak's paper A
maximum-entropy-inspired parser (2000), and their application to and performance on the function
tagging problem. As the term �maximum-entropy-inspired� is rather unwieldy as a term of art (and
not particularly evocative of the actual algorithm), we have adopted the descriptor �feature trees�,
referring to the core structures involved.

4.1 A brief history and overview of maximum entropy

The driving principle behind maximum entropy models is that when assigning probability distri-
butions based on limited information, if we have no information on the relative likelihood of two
events then we should assign them equal probability. More generally, given the information that we
do have, we want to assign the most uniform probability distribution that is consistent with that
information. As pointed out in (Berger et al., 1996) and elsewhere, this is not a new idea, arguably
dating back to William of Ockham or earlier. The Principle of Indi�erence (or Insu�cient Reason)
has been given in various forms, of which the earliest clear and general statement was probably by
Johannes von Kries (1886, p. 6):

Two or more cases are to be regarded as equally possible, when in their respective cir-
cumstances we can �nd no reason to maintain one as possibly more probable than some
other.

although it has a documented pedigree stretching back at least to Jacques Bernoulli.1
When we do have information to distinguish the probability of two events, we won't want to

consider them equally likely, of course. More importantly, if we have many possible events, and
some information about their respective likelihoods, we will need some way to calculate a proba-
bility distribution that will make them as equally likely as possible, within the constraints of that

1The pedigree includes Laplace, who often gets credit for the whole thing. For an interesting digression on the
history of this principle, see Appendix D of this thesis.
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information. In order to measure this notion of �as equally likely as possible�, we will turn to the
entropy measure H, introduced by Shannon (1948, Section 6):

H = −K
n∑

i=1

pi log pi . (4.1)

(for some constant K, denoting a scaling factor; we will assume K = 1). It measures how uncertain
we are about a given probability distribution p. For example, if the log is taken base 2, and p is
equally distributed over two choices, the entropy H will be exactly 1. If, however, p1 is 0 and p2 is
1�meaning we are certain that the second choice will occur�then the entropy of this distribution
will be exactly 0�indicating that there is no uncertainty about the outcome.

Now that we have a concrete measure of the uncertainty present in any given probability distribu-
tion, we might recast the Principle of Indi�erence as indicating that we should choose a probability
distribution that has no certainty that is unwarranted; in other words, the distribution that has
the greatest uncertainty, or entropy, given our constraints. Edwin Jaynes (1957) made just that
observation, and named it the principle of maximum entropy. For a more complete discussion of the
underlying mathematics, one can refer to the original Jaynes paper or the slightly more accessible
(Guia³u and Shenitzer, 1985).

In Equation 4.1 we have an expression for the entropy of a distribution p. Following (Berger et
al., 1996), let us consider a conditional distribution p(y|x), the probability of some event y given
conditioning information x; then we can talk about the entropy of the distribution with respect to
a single example x:

Hp,x = −
∑

y

p(y|x) log p(y|x) (4.2)

Then it is fairly straightforward to extend this to a de�nition of the entropy of p with respect to a
whole corpus of examples x; we calculate the entropy relative to each individual example, then sum
them, weighting according to the (observed) frequency of each example x.

Hp = −
∑

x

p̂(x)
∑

y

p(y|x) log p(y|x)

= −
∑
x,y

p̂(x)p(y|x) log p(y|x) (4.3)

Now, in principle, we can propose any p at all, evaluate its entropy with respect to a training
corpus, and compare it to other proposed p distributions, �nally selecting the one with the greatest
entropy. In reality, of course, there exists an in�nitude of possible distributions, and we can't hope
to evaluate them all. However, we can restrict ourselves to p of the form

pλ(y|x) =
1

Zλ(x)
e

∑
i

λifi(x, y)
(4.4)

and it turns out that we can reduce the problem of �nding the most entropic p to a somewhat more
feasible optimisation problem on the λi values. (A justi�cation for this restriction and explanation



21

of this reduction is available in (Berger et al., 1996) and earlier papers.) Furthermore, once a model
is trained, and the λ values are known, calculation of this probability is very easy. If the goal of the
calculation is merely to score di�erent y values, the Z factor�which serves to normalise the value
into a probability distribution summing to 1�can be ignored, along with the exponentiation, without
changing the relative ranking of the y values. The f(x, y) is a feature value (generally binary), and
the lambdas are precalculated, making the remaining scoring task equivalent to calculating a few
simple dot products.

In addition to machine translation, which was maximum entropy's entrée into the �eld of
NLP (Berger et al., 1996), maximum entropy models have been proposed for other NLP tasks,
including parsing (Ratnaparkhi, 1999). The Ratnarparkhi model uses the model to tie together and
impose statistics onto a three-pass parser that �rst tags, then chunks, then combines the existing
chunks using a shift-reduce parser.

4.2 From interpolation to feature trees

A simple, and now standard, technique for smoothing a probability model is known as held out
interpolation, introduced in (Jelinek and Mercer, 1980). When one has a probability distribution
with a great deal of conditioning information, it is likely that that distribution will sometimes
become unreliable due to sparse data�if a given set of conditioning events has only been seen a
few times, the empirical distribution it engenders is likely to vary considerably from the platonic
`true' distribution. To combat this problem, we �fall back� to a distribution with fewer conditioning
events: less speci�c, but more likely to be close to the `true' distribution. There is no reason to limit
the fallback to a single level, either; we can give consideration even to the most general distribution
available. The extent of the reliance on less speci�c distributions is controlled by an interpolation
factor λ:

p(y|x1, . . . , xn) =
n∑

i=1

λi(x1, . . . , xn)p̂(y|x1, . . . , xi) (4.5)

In this, its most general form, each λi is a function of all the conditioning information, permitting
the �nal distribution to rely more on speci�c distributions for those conditioning environments that
are common, and more on the general distributions for the rarer conditioning environments.

The key observation made by Charniak (2000) was that where an interpolation model would use
interpolation factors on several probabilities to calculate a �nal distribution, a maxent model with
appropriate features might make the exact same calculation. Consider a case where an event y is
conditioned on three other events x1, x2, x3; and in this particular case their values are a, b, c. In
an interpolation model we thus have

p(y|a, b, c) = λ1(a, b, c)p̂(y|a, b, c) + λ2(a, b, c)p̂(y|a, b) + λ3(a, b, c)p̂(y|a) . (4.6)
But let's say we've trained a maxent model with features for every value of x1, every pair of values
x1, x2, and every triple of values x1, x2, x3. In this case, most of the features will have values of zero,
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leaving the exponent in the probability formula (cf. (4.4)) to be
λy,a,b,cf(y, a, b, c) + λy,a,bf(y, a, b) + λy,af(y, a) . (4.7)

Strikingly similar in both form and e�ect; this invited further comparison.
Charniak �rst observed that since the maxent case was additive in the exponent, it could be

rewritten as a multiplicative sequence
p(y|a, b, c) = g0(y, a, b, c)g1(y, a, b, c) · · · gj(y, a, b, c) , (4.8)

where each gi could be rewritten as e raised to a power containing a lambda and a feature function.2
Each term of this product is zero if the relevant feature is independant of the event being predicted,
less than one if the feature contraindicates the predicted event, and greater than one if the feature
correlates positively with the predicted event; and thus we can think in a convenient way about
what e�ect each feature has on the �nal probability. Would it be possible to take the basic model,
interpolated or not, and give it this sort of incremental property?

It would, and with interesting e�ect. As a �rst pass, we ignore the smoothing weights and just
rewrite the base distribution p(y|x1, x2, x3) as follows:

p(y|x1, x2, x3) = p̂(y)
p̂(y|x1)
p̂(y)

p̂(y|x1, x2)
p̂(y|x1)

p̂(y|x1, x2, x3)
p̂(y|x1, x2)

(4.9)
Due to cancellation of terms, this equation is trivially true. But it has the property noted in the
previous paragraph: after the �rst term (which is a probability), all subsequent terms either increase
or decrease the probability based on the evidence provided by the newest feature.

Arranging the terms in this fashion highlights another fact as well. In each case, as we add a new
feature to consideration, we are continuing to condition on all the previous conditioning information.
That is surely the correct thing to do sometimes, but perhaps not always. For example (argues
Charniak), perhaps we want �to condition on the parent's lexical head without conditioning on the
left sibling, or the grandparent label.� If, in our example, we feel that x2 and x3 are independent
with respect to their predictive power on y, then we would drop x2 from the �nal term of (4.9),
yielding the following:

p(y|x1, x2, x3) = p̂(y)
p̂(y|x1)
p̂(y)

p̂(y|x1, x2)
p̂(y|x1)

p̂(y|x1, x3)
p̂(y|x1)

(4.10)
The �rst thing to notice is simply that the equation no longer reduces to a tautology, even in this
non-smoothed form. More speci�cally, though, we not only removed x2 from the numerator of the
�nal term, but from the denominator as well. This is consonant with our notion of each term being a
separate greater- or less-than-one multiplier; and representing the marginal �additional information�

2Now is probably a good time to warn against confounding the two types of lambda in this discussion. In an
interpolation model, λ represents a factor that is multiplied against an empirically observed probability, acting
as a weight on that probability. In a maxent model, however, the feature function is binary, so the λ carries the
entire responsibility for �how does this feature a�ect the �nal probability�; but neither the feature, nor the λ, nor
their product can be meaningfully said to be a probability by itself.
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granted by a new feature over some previous estimate. The di�erence being, it is no longer the
immediately previous estimate. Formally, the system is now not a probability distribution, since in
most cases the sum of all scores will not be 1; this can be corrected with a normalisation term if a
true probability model is desired, although we will omit such a term from the ensuing discussion.

We can think about this change graphically. Under the old system, of (4.9), the calculation can
be represented with a chain of nodes, each representing a di�erent term (and feature), and having
a sort of predictive dependence on the immediately preceding node; this is shown in Figure 4.1. By
contrast, (4.10) can be represented as a tree, as in Figure 4.2, where each node is no longer necessarily
linked to the immediately �preceding� node if we have judged it to be predictively independent. (We
use this slightly awkward notion �predictive independence� to highlight the fact that these variables
may not be�and probably are not�independent in the probabilistic sense.)

y
r

x1

r
x2

r
x3

Figure 4.1: A feature chain

y
r�����

�

HHH
HHH

x1

r
x2

r
x3

Figure 4.2: A feature tree
Now we can return to the question of how to smooth these new feature-tree-based probabilities.

In a totally unsmoothed world, many of the terms in (4.10) would still cancel out, reducing to
p(y|x1, x2, x3) =

p̂(y|x1, x2)p̂(y|x1, x3)
p̂(y|x1)

. (4.11)
Of course, we will want each of the component probabilities to have some in�uence on the �nal result
(without losing our greater- or less-than-one property). The solution: separately smooth each of the
component probabilities, making this equation

p(y|x1, x2, x3) =
p(y|x1, x2)p(y|x1, x3)

p(y|x1)
; (4.12)

yes, that is the same formula sans the hats over the p on the right side: these are just the smoothed
probabilities for this distribution.

In principle, any smoothing will work with this schema; the one we have used is a form of
interpolation that is calculated recursively:

p(y|b1, . . . , bn) = λn(b1, . . . , bn)p̂(y|b1, . . . , bn) + (1− λn(b1, . . . , bn))p(y|b1, . . . , bn−1) (4.13)



24

function
tag rlabel r�����
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HHH

HH

parent's
label

rsucceeding
label

rgrandparent's
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rparent's
head's POS r�����

�

H
HHH

HH

head's
POS

rgrandparent's
head's POSrparent's

head ralt-head's
POS ralt-headrhead

Figure 4.3: The generic feature tree used to guess function tags in the original paper

Note the location of the hats, and the extent of the b sequences: what this formula does is take a
relatively speci�c empirical distribution, and mixes it in with the pre-existing, less speci�c, smoothed
distribution.

The chief advantage of the feature tree system, as compared to the older feature chain system
(i.e. plain interpolation), is that it is able to make use of more information in the face of sparse
data. Especially when lexical items are involved, the data frequently become too sparse before all
the desired features have been considered; a lexical feature will usually be the last one in a chain
to have in�uence, simply because there are on the order of 40,000 words. In a feature chain, this
means that we are e�ectively limited to a single lexical feature, which will be the last one considered.
In a feature tree, however, each lexical item is permitted to have its own branch on the tree, thus
mitigating if not entirely negating this e�ect.

4.3 Experimental design

As is standard with parsing, we have divided the Penn treebank II Wall Street Journal corpus into
training, development, and testing sections. For each feature tree that we wish to test, we �rst
run a pass over the training sections (2�21) to gather the statistics for the p̂ distributions. The
smoothing parameters λ are then estimated based on the held-out development section (24); and
then performance is evaluated. For the purposes of seeking out the best feature trees, we re-used
section 24 for testing, then selected just the best feature trees and reported �nal results on the true
testing section (23).

4.4 Results

In our �rst reported results on this work (Blaheta and Charniak, 2000), we gave results derived from
a single feature tree, shown in Figure 4.3. The version of those results we give in Table 4.1 on the
facing page is modi�ed slightly from the paper; �rst, those results were reported only for sentences
shorter than forty words (these are for all sentences), and second, those results included performance
on the CLR tag, which we now ignore (cf Section 2.1.1).
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With-null ���No-null���
Accuracy Precision Recall F-measure

Syntactic 98.820% 94.803% 95.509% 95.155%
Semantic 97.069% 80.458% 79.169% 79.148%
Topicalisation 99.924% 93.724% 93.724% 93.724%
Miscellaneous 99.782% 75.676% 26.667% 39.437%
Overall 98.899% 87.927% 88.631% 88.626%

Table 4.1: Performance of tree in Figure 4.3

After this initial set of results, we tried to �nd the best trees for the job, permitting di�erent
trees for each function tag category. Starting with a feature tree of zero nodes (i.e. just the prior),
we repeatedly perturbed it by one of four operations:
• adding a new feature at the end of one branch,
• swapping two features in the middle of the tree (e.g. changing a tree a−b−c−d into a−c−b−d),
• moving one of the features at the end of one branch onto a di�erent (possibly new) branch of
the tree, or
• (occasionally) inserting a new feature into the middle (usually this was only done when we
looked at a tree and saw a �head� feature without its corresponding �head's POS� feature).

At all points we kept the several feature trees that performed best for each category on the devel-
opment set (section 24 of the Penn treebank).

Since the purpose was primarily exploratory, the process was never fully automated, so the choice
of �the several best� was to some extent subjective, and sometimes one better tree would be thrown
out in favour of another, if the better tree was very similar both in form and in performance to an
even better tree. In this way we hoped to avoid getting stuck in local maxima. Another factor in
avoiding local maxima was that all categories were tested for each feature tree; this had the e�ect
of retaining a number of fairly (increasingly) diverse trees in the pool for each category. Continuing
research in this direction could certainly involve automating this process using any of a number of
standard search algorithms.

A selection from the thousands of runs is given in Table 4.2 on the following page. In the left
column is a sequence that identi�es the feature tree used to calculate the statistics for those runs,
which can be read as follows: each number represents a feature, as enumerated in Table 4.3 on
page 27. Sequences of only numbers represent feature chains; occurrences of the letter `B' signify
backing up one space on the current path and attaching the next feature there. (Two Bs indicate
attaching the next feature two nodes back, and so on.) For reference, the �nal line of the table
represents the generic feature tree of Figure 4.3 on the facing page. Superscripts mark trees and
values that will be discussed later in this chapter or in Chapter 7.



26
Syntactic Semantic Topicalisation

0 00.00 00.53 00.00
3 40.98 52.92 00.00
8 79.08 00.53 00.00
0/1 89.86 14.60 54.82
0/8 86.24 02.49 00.00
0/12 89.86 14.60 82.93
8/0 86.24 02.98 00.00
8/1 83.73 01.44 54.41
8/4 80.56 05.60 72.28
3/30 41.68 66.54 00.00
0/1/4 93.48 31.65 87.91
0/1/7 92.49 28.70 72.39
0/8/4 91.97 31.52 89.84
3/30/6 73.71 74.96 25.21
3/30/7 59.85 74.51 25.21
3/30/12 82.06 74.82 51.52
0/1/4/3 94.73 53.94 87.78
0/1/4/7 94.56 40.47 89.73
0/1/4/10 94.19 33.97 88.53
0/8/4/3 93.26 51.39 91.80
0/8/4/12 92.72 39.47 91.80
3/30/12/33 83.90 76.66 89.62
3/30/12/0 83.90 76.64 88.89
3/30/7/42 79.24 76.34 74.71
3/30/7/33 61.10 76.33 54.43
0/1/4/10/7 95.21 39.38 89.25
0/1/4/10/3 95.19 49.69 89.13
0/1/4/3/7 95.13 54.19 87.78
0/1/4/7/10 95.15 41.62 89.73
0/1/4/7/9 95.03 41.55 89.73
0/1/4/7/3 95.18 52.14 90.71
0/1/4/10/7 95.21 39.38 89.25
3/30/12/33/4 86.23 77.93 89.13
3/30/7/33/4 74.38 77.63 76.67
3/30/12/0/11 84.96 77.19 89.40
3/30/12/0/7 85.58 77.19 90.11
3/30/12/33/6 85.66 77.17 87.43
0/1/4/10/3/7 95.58 49.72 89.62
3/30/12/0/7/4 86.52 78.18 89.62
3/30/12/33/4/38 86.23 77.63 89.13
3/30/12/33/4/2 86.23 77.63 89.13
3/30/12/33/4/6 86.23 77.63 89.13
0/1/8/B/4/10/3/7 95.62 50.59 91.49
0/1/8/B/6/4/10/3/7 95.70 50.74 87.76
0/1/8/B/6/4/10/7/B/3 95.78 52.06 87.76
0/1/8/B/6/4/10/7/B/2/3 SY 95.80 52.12 88.66
3/29/30/12/0/7/4 SM 86.49 78.80 89.62
2/3/29/30/12/0/7/4 85.25 78.62 90.91
2/3/29/30/B/B/B/12/0/7/4 94.86 77.82 93.95
0/2/3/29/30/B/B/B/12/7/4 94.94 79.00 92.59
0/3/29/30/B/B/B/12/7/4 94.80 78.06 93.09
0/1/8/B/4/10/2/3/B/7 95.66 52.21 92.47

0/1/8/7/B/B/9/6/2/10/B/4/B/3/29/30 94.58 73.58 92.59

Table 4.2: F-measure from various test runs on Section 24
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0 label
1 parent's label
2 head's POS
3 head
4 parent's head
6 parent's head's POS
7 left sibling's label
8 right sibling's label

9 grandparent's label
10 grandparent's head's POS
11 grandparent's head
12 parent's cc-label
29 alt-head's POS
30 alt-head
33 label backo�
38 parent's head's cluster

Table 4.3: Key to numeric feature IDs in Figure 4.2 on the preceding page

syntactic
func tag rlabel r�����

�

parent's
label

rsucceeding
labelrparent's

head's POS rparent's
head r�����

�

grandparent's
head's POS

rpreceding
labelrhead's
POS rhead

Figure 4.4: The feature tree used to guess syntactic tags

The �nal trees we arrived at for the syntactic and semantic tags can be seen in Figures 4.4
and 4.5, marked as SY and SM respectively in Table 4.2. This method failed to improve on the
generic tree for use in topicalisation; and the miscellaneous category was optimised including the
CLR tag, and so the results are no longer relevant, so we only give new results on the �nal test set
for the �rst two categories. The results of using these new trees on the true test section, Section 23,
are given in Table 4.4 on the following page.

4.5 Incorporating function tagging into parsing

Because this algorithm for calculating function tags is based on an algorithm originally conceived for
parsing sentences, it seemed as if it would be straightforward to integrate the two�maintaining a full
list of candidate parses, with their probability scores, and function tagging all of them, returning the
combination of parse and function tags that yielded the highest aggregate probability score. This,
we hoped, might yield two bene�ts. The �rst was that it would be an integrated system, convenient
for maintenance, modi�cation, and (not least) use in language modelling. The second was that it
would actually improve parsing.

Our reasoning went something like this: sometimes, the parser comes up with the wrong answer,
but the right answer would have been its second choice. In at least some of these cases, the function

semantic
func tag rhead ralt-head's

POS ralt-head rparent's
cc-label rlabel rpreceding

label rparent's
head

Figure 4.5: The feature tree used to guess semantic tags
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With-null ���No-null���
Accuracy Precision Recall F-measure

Syntactic 99.025% 96.455% 95.328% 95.888%
Semantic 97.594% 86.693% 80.283% 83.365%

Table 4.4: Performance of new trees on Section 23

Parse probabilities:
p(badparse) 60%
p(goodparse) 40%

Probabilities of correct function tag f :
p(f | goodparse) 80%
p(f | badparse) 30%

Joint probabilities:
p(f & badparse) 18%
p(f & goodparse) 32%

Figure 4.6: An example illustrating why integrating systems might help

tag associated with this constituent becomes much more likely when the correct parse is selected. The
integrated parser/function-tagger will then select the correct parse. Some example scores illustrating
this are given in Figure 4.6: the good parse by itself gets a lower probability score, but taken together
with its function tag it receives a higher score.

The good news is, integrating the two systems is possible, and yields a language model. However,
it turns out that integrating the systems doesn't signi�cantly a�ect parsing one way or another. As
is so often the case, the cause seems obvious in retrospect: in looking to the correct function tag to
rescue the probability, we haven't considered all the competition. In the �nal ranking, we consider
not only the correct function tag, but all function tags; and if the correct function tag scored low
enough to matter on the bad parse, some other function tag is likely to have scored much better, as
in Figure 4.7 on the facing page.

It is certainly possible to devise examples where, even considering all function tags, integrating
the function tagging improves the parsing. Such an example can be seen in Figure 4.8 on the next
page. These cases are characterised by three main rules:

1. The correct parse must have a score close to the top score
2. The correct parse must have a clear and obvious function tag, with a probability near 100%
3. The high-scoring parse's function tag mustn't be much more likely than the alternatives

Actual parse probability scores tend to be several orders of magnitude smaller than those given in
our illustrations here, and even parses with �close� scores di�er by considerably more than a factor
of 1.5. As rule 1 weakens, rules 2 and 3 must strengthen to compensate. In practice, these situations
tend not to occur very often.
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Parse probabilities:
p(badparse) 60%
p(goodparse) 40%

Probabilities of correct function tag f
and incorrect function tag x

p(x | badparse) 70%
p(f | badparse) 30%
p(f | goodparse) 80%
p(x | goodparse) 20%

Joint probabilities:
p(x & badparse) 42%
p(f & goodparse) 32%
p(f & badparse) 18%
p(x & goodparse) 8%

Figure 4.7: An example illustrating why integrating systems doesn't help

Parse probabilities:
p(badparse) 60%
p(goodparse) 40%

Probabilities of correct function tag f
and incorrect function tag x

p(x | badparse) 55%
p(f | badparse) 45%
p(f | goodparse) 95%
p(x | goodparse) 5%

Joint probabilities:
p(f & goodparse) 38%
p(x & badparse) 33%
p(f & badparse) 27%
p(x & goodparse) 2%

Figure 4.8: An example illustrating why integrating systems might still help
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Chapter 5

Decision trees

Another sort of system that is based on features is the decision tree. However, instead of always
using the same features of every constituent, a decision tree chooses which features to use questions
to ask based on the answers to the previous questions. The tree structure here arises di�erently from
that of feature trees: before any questions are asked, there is a single root state, and as questions
are asked and answered the process descends through the branches of the tree. At the leaf nodes we
�nd the decision that the tree has made, the value it chooses for the feature in question.

Decision trees have been used in other natural language tasks (Magerman, 1994; Bahl et al.,
1989), and seemed like their ability to change the conditioning features based on the values of other
conditioning features would come in very handy. For instance, on the one hand a constituent is very
likely to be a predicate (PRD) if it is a noun phrase under a verb phrase headed by a form of `to be',
irrespective of what the head or siblings of the noun phrase might be; on the other hand, a noun
phrase that is the left sister of a verb phrase is likely to be a subject (SBJ), whatever the verb in
the sentence might be.

5.1 Decision trees in function tagging

As an initial pass at the problem of generating decision trees for the function tagging task, we
decided to use an existing package: Ross Quinlan has implemented an algorithm to grow decision
trees in his package c4.5. We converted the same training, development, and testing corpora used
in the previous chapter into a format readable by c4.5, and trained on a million constituents of the
training data, testing (for exploratory purposes) on the development corpus. These results are given
in Figure 5.1 on the following page, along with the results from our best trees on the development
corpus. Note that these numbers for the feature trees are di�erent from those reported in Figure 4.2;
this is because those numbers were for the function tagging task performed on machine-parsed
sentences, while the numbers reported here are on gold-standard parses.1

1Which in turn gives rise to two questions: why didn't we use the machine-parsed sentences here? Why didn't we
use the gold-standard parses there? For the former, this was meant as an exploratory �rst pass at decision trees,
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Precision Recall F-measure
Syntactic

Feature trees 98.21 97.36 97.78
Decision trees 98.75 97.55 98.15

Semantic
Feature trees 80.61 76.88 78.70
Decision trees 81.08 71.07 75.75
Figure 5.1: Preliminary decision tree results

These initial results were slightly promising; the syntactic tags did increase by a small amount,
and performance on the semantic tags was not hurt much. This may in part be because of a smaller
training corpus for the decision trees: we truncated the training at one million example constituents
due to memory limitations. (This was before we thought to strip out the terminal constituents, as
we do in the next chapter; but doing so does not signi�cantly increase the number of nonterminals
the training can handle, presumably because the algorithm was already paying very little attention
to the terminal constituents.)

5.2 Why we abandoned decision trees

Improving the performance of the decision trees was unquestionably a valid possible research di-
rection. However, moving beyond the initial exploratory tests would have required either writing
a decision tree learner from scratch, or acquiring, learning, and modifying the c4.5 code itself, in
order to improve the results and resolve the memory issues. Neither direction would have been
impossible, but as we will see in the next chapter, the perceptron algorithm had a very easy initial
implementation and a number of straightforward improvements for us to experiment with; and its
performance on the initial algorithm was approximately on a par with the decision tree performance
and had no memory problems.

We may at some point return to see if decision trees can be usefully brought to bear on the
problem, but for now it seemed more sensible to address the perceptron �rst.

not as the last word on their performance. For the latter, we discuss this decision at greater length in Section 2.4.



Chapter 6

Perceptrons

The perceptron algorithm was originally devised nearly a half century ago as a method of explaining
how, when presented with various stimuli, neurons can learn them, store them, and later recognise
similar stimuli (Rosenblatt, 1958). Later, computer scientists latched onto a form of the perceptron
algorithm to perform the same task in arti�cial intelligence systems, due to the extreme simplicity
of the basic algorithm. It was soon discovered, however, that it had some weaknesses that made it
di�cult to use�in particular, it only worked on problems that were linearly separable (about which
more later).

Various solutions have been proposed, most of which made for signi�cantly �heavier� algorithms,
but recently there has been some work at using algorithms that retain the simplicity, if not the
speed, of the original algorithm. It is these that we consider in this chapter.

6.1 A high level view

The key intuition behind this algorithm involves imagining that we are training neurons�perceptrons�
to recognise speci�c types of things. In the classic binary form of the algorithm, we train a single
perceptron to say �yes, it is an X � or �no, it isn't an X � about any given stimulus, whether X is
utterance of the word `can' or odour of a skunk or image of my grandmother. The training consists
of exposing the perceptron to many stimuli�some X, some not X�letting it guess the X -ness of
each, and then correcting it if it is wrong.

Essentially, the perceptron sees each stimulus as a point in a many-dimensional space. It tries
to draw a line�or rather, a hyperplane�to separate the space into two halves, the `yes' half and
the `no' half. As corrections are made, it adjusts the location of this hyperplane in the space. If
it guesses `no', but the correct answer was `yes', then the hyperplane is adjusted to put the point
corresponding to that stimulus on the `yes' side of the hyperplane, or at least not as far on the
`no' side. (Repeated attention to that same stimulus would eventually move the hyperplane far
enough to put the stimulus on the `yes' side.) If the stimuli are linearly separable, and at least one
hyperplane can be drawn that puts all the `yes' stimuli on one side and the `no' stimuli on the other,
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Figure 6.1: A linearly-separable dataset, and some valid separators

the perceptron will �nd one such hyperplane.
Consider the following two-dimensional example. In Figure 6.1, we have a collection of data in

two clearly-de�ned sets. We can draw a line that completely separates them; three such lines are
shown in the �gure, and given enough training data, the perceptron algorithm will, eventually, �nd
such a line as well. But we can add just a single data point to that set, indicated by an arrow in
Figure 6.2, that makes the set no longer linearly separable: there is no (straight) line that can be
drawn across Figure 6.2 that puts all the crosses on one side and all the circles on the other. On
such a data set, the perceptron algorithm would never converge. At some point it might draw a line
with the only error being the new data point; but then, presented with that data point, it would
�correct� the line, and some of the crosses would be on the wrong side of it.

Real-world problems, as it turns out, are rarely completely linearly separable. To humans, this
presents little di�culty: presented with a problem like Figure 6.2, most would either just draw a
curved line that perfectly separates the two halves of the data, or accept the new circle as an outlier,
draw a line that separates the rest of the data perfectly, and be done with it. Both of these tactics
have been used in modifying the perceptron algorithm to resolve the convergence problem, and we
will discuss them further later in this chapter.

6.2 Multi-valued classi�cation

While the classic perceptron algorithm performs a binary classi�cation�`yes' vs. `no', `circle' vs.
`cross'�many problems actually involve a decision between more than two choices. In particular,
most of the function tag groups have multiple members, so the choice is not �DTV or not DTV?�,
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Figure 6.2: A non-linearly-separable dataset

but rather �DTV, or LGS, or . . . , or VOC, or no syntactic tag at all?� Hence the problem becomes
a little more complicated than training a single perceptron to say `yes' or `no'.

Not much more complicated, however. For the multi-valued classi�cation problem, we can imag-
ine a group of m agents�one for each possible output value�each trained to be an expert at guessing
whether to assign its output value to a given stimulus. That is, for any given stimulus, a given agent
can assign its output value with high con�dence, or with low con�dence, or with no con�dence at
all. The agent that is most sure of being correct `wins'. For instance, the LOC agent and the TMP
agent might each want to assign its tag to a certain constituent; but the TMP agent has a higher
con�dence for that constituent�it is more sure of being correct�so the constituent gets tagged
TMP. If the group of agents as a whole guesses wrong, they adjust their parameters slightly in order
to get similar instances correct in the future. To continue the example, if the TMP agent `wins',
but the correct answer would have been LOC, then the TMP agent decreases its con�dence on that
stimulus and similar stimuli, while the LOC agent increases them accordingly.

We can look at this visually as well, though it is a little more complicated than the binary case
(and yet much more simpli�ed relative to what's actually happening). In Figure 6.3, we see a tri-
valued dataset. The three solid lines represent the perceptrons�the experts. The distance from a
line to a point represents that expert's con�dence in its judgement about that point. Some points
are `claimed' by more than one expert. Those points in the upper middle of the �gure are claimed
both as crosses and as Xs, but those to the left of the dashed line are claimed with more con�dence
by the cross perceptron, while those to the right of the dashed line are claimed more strongly by the
X perceptron.
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× perceptron

◦ perceptron

+ perceptron

Figure 6.3: A tri-valued dataset

For j in 1 . . .m
Zero weight vector wjFor each constituent vector ci, with correct tag f
For j in 1 . . .m

sj ← wj · ci

a← argmaxj sjif a 6= f (*guessed wrong*)
wa ← wa − ci

wf ← wf + ci

Figure 6.4: The perceptron algorithm: training

6.2.1 The algorithm

What makes the basic perceptron algorithm so simple, and so fast, is that the process of `consulting'
each expert is just a matter of calculating a dot product; and then correcting them when they are
wrong is just vector addition. The full algorithm for m-valued classi�cation is given in Figure 6.4.
Each expert is a weight vector wj , its con�dence measured by taking its dot product with the
stimulus, constituent c. This con�dence, or score, is compared against the scores given by the other
weight vectors; and the one with the greatest score gets to assign its tag, a, to the constituent. If a

is the same as the correct tag f , we're done. If not, then our system guessed wrong.
When the system guesses wrong, we need to update the weights. This is done by simple vector

addition: ci is subtracted from the weight vector that (incorrectly) scored it highest, and added to
the weight vector that should have scored it highest. This has the direct e�ect of nearly guaranteeing
that the system will get ci right if it sees it again�if there are twenty active features, then the score
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For each constituent vector c
For j in 1 . . .m

sj ← wj · c
a← argmaxj sjMark c with tag a

Figure 6.5: The perceptron algorithm: testing

wa outputs will have decreased by twenty, and the score wf outputs will have increased by twenty.
(Remember that the constituent vector ci is binary.) But more importantly, this also has the e�ect
that constituents similar to ci will be similarly a�ected, albeit to a lesser degree.

The testing algorithm is essentially identical to the training algorithm, except that the weights
are not zeroed at the beginning and are not updated at each iteration. We give the testing algorithm
in Figure 6.5, for completeness.

The basic perceptron algorithm is, if nothing else, fast. The training is O(mfn), where n is the
number of training examples, f the number of features in use (varying from 10�20 in this work), and
m the number of possible values (no more than 10 here). Individual test cases are O(mf), essentially
constant. Put into concrete numbers, a full run through the training set (780K constituents) takes
about three to �ve minutes, and the entire test set (27K constituents) about six seconds, of which a
signi�cant portion is just the overhead of reading in the �les. Even training for twenty `epochs', or
iterations through the full training set, only takes about an hour. Unfortunately, the speed comes
at a cost: the algorithm never actually converges, and even after it stabilises, the �uctuations in
performance can be on the order of 7�10 percentage points. It is a tolerable quick and dirty solution:
very quick, but very dirty.

6.3 Voted perceptrons

One proposed solution to the convergence problem is the voted perceptron (Freund and Schapire,
1999). The basic idea behind this algorithm is that the wildly �uctuating performance of the basic
perceptron is producing a large number of pretty good classi�ers; and while any given one of them
may be the worst of the lot, if we use them all together to �nd a result, we should do reasonably
well. Expressed in terms of Figure 6.2, the basic perceptron would keep shu�ing the line around,
so that at any given time the points near the line might be on the wrong side of it. But with the
exception of the new point, most of the points would be on the correct side of the line more often
than not, and hence the voted perceptron would put them all on the correct side of the line.

The essence of the voted perceptron training algorithm (shown in Figure 6.6) is identical to the
basic perceptron algorithm; we merely add a bit of bookkeeping. Speci�cally, new weight vectors
are created rather than updating the old ones�we need to retain all weight vectors for later use in
the voting. The new tk variable represents how long a given weight vector wk has gone unchanged,
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For j in 1 . . .m
Zero weight vector w0,j

k ← 0
t0 ← 0
For each constituent vector ci, with correct tag f

For j in 1 . . .m
sj ← wk,j · ci

a← argmaxj sjif a 6= f (*guessed wrong*)
wk+1,a ← wk,a − ci

wk+1,f ← wk,f + ci

k ← k + 1
tk ← 1

else
tk ← tk + 1

Figure 6.6: The voted perceptron algorithm: training

For each constituent vector c
For k in 1 . . .M

For j in 1 . . .m
sk,j ← wk,j · c

a← argmaxj sk,j

va ← va + tk
b← argmaxa vaMark c with tag b

Figure 6.7: The voted perceptron algorithm: testing

again for use in the voting later. (We could alternatively omit the t variable, and instead create a
new wk+1 in every iteration, identical to wk in the cases where we guess correctly.)

The testing section is signi�cantly more complicated in the voted perceptron. There is an extra
loop, with M iterations, where M is the number of mistakes made during training (and hence the
number of di�erent extant weight vectors). The inner loop is essentially the same as the old basic
testing algorithm: calculate scores for each possible output value, and choose the one with the
highest score. But here, that value (a) just gets a certain number of votes according to how long
the current weight vector survived during training (tk). Then at the end, the value with the most
votes is selected and returned.

The chief disadvantage of this algorithm is that it is slow. While the training phase is essentially
identical, running a single test case is now O(mfM)�and M is in the many thousands even for a
single epoch of training. For easy tasks like syntactic tagging, where fewer mistakes are made, the
testing phase (again, over 27K constituents) can take as much as two hours; the semantic tagging
task can take twelve or more. On the other hand, at least the training is speedy; as previously
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For i in 1 . . . n, j in 1 . . .m
αi,j ← 0

For each constituent vector ci, with correct tag f
For j in 1 . . .m

sj ←
i−1∑
k=0

αk,jck · ci

a← argmaxj sjif a 6= f (*guessed wrong*)
αi,a ← −1
αi,f ← +1

Figure 6.8: The dual form of the perceptron algorithm: training

For each constituent vector c
For j in 1 . . .m

sj ←
i−1∑
k=0

αk,jck · ci

a← argmaxj sjMark c with tag a

Figure 6.9: The dual form of the perceptron algorithm: testing

stated, the training is essentially the same as before, and can get through an epoch in three to �ve
minutes.

As formalised above, the algorithm has another major disadvantage: it would require large
amounts of storage, for all of the weight vectors. Conveniently, though, since all modi�cations to
weight vectors are the addition or subtraction of some constituent vector ci, we can instead just
store the index i along with a multiplier of +1 or −1, and then reconstruct the weight vector on the
�y later. This variant on the perceptron algorithm is known as the �dual form�, and can be applied
without penalty to any of the perceptron variants with a factor of M in their complexity (as these
are already iterating through all the historical weight vectors anyway). The dual form algorithm in
its non-voted form is given in Figures 6.8 and 6.9. The key thing to note is that the equivalence

wk,j ≡
i−1∑
k=0

αk,jck

holds throughout the algorithm.

6.3.1 Sparse voted perceptron
A voted perceptron trained on just a single epoch through the training data took over twelve hours
to run through the testing data�27K constituents�averaging about a second and a half per con-
stituent. As this is already signi�cantly longer than any real-world algorithm will likely want to wait,



40

x
y

Figure 6.10: The surface z = xy

there seemed to be little point in running it on multiple epochs of training (which would increase
the time quadratically). But the training goes so fast! Isn't there some way to get the advantages
of the voted perceptron without having to wait quite so long for it?

So we wrote a `sparse' voted perceptron. Rather than taking every single weight vector that was
created during training, we sample them. That is, during the training process, at various intervals
we save the current weights vectors; in the testing, we use just the saved vectors to vote�on the
order of dozens, rather than hundreds of thousands. This removes the M factor from the complexity,
making the testing O(mfn) again. Now that we (again) had access to many epochs of training, we
elected to only save weights from after the �rst �ve epochs�allowing the perceptrons to, arguably,
converge. With 61 weights vectors voting, the testing run took about four minutes, and performed
quite well.

6.4 Kernel-based perceptrons

Another tactic used to improve the basic perceptron algorithm is to reduce its reliance on the linear
separability of the data. In some cases, the data may be separable by a polynomial, curved separator;
even if not, such a separator may at least do a better job. The problem of �nding one is solved
by reducing it to the previously solved problem: we have an algorithm that �nds linear separators,
so we create a mathematical context where (some types of) non-linear separators look like linear
separators, and then let the perceptron discover them.

Consider a binary classi�cation problem that makes use of two features. Each stimulus can be
plotted on a two-dimensional (x, y) coordinate plane. Now suppose that we create an additional
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x
y

Figure 6.11: A plane in 3D corresponds to a hyperbola in 2D

feature that is nothing more than the product of the existing two features. The stimuli have now
been embedded into a three-dimensional (x, y, z) coordinate space, but the three dimensions are not
independent, and every stimulus thus lies on the curved surface z = xy, shown in Figure 6.10.

But as far as the perceptron algorithm is concerned, a 3D space is a 3D space, and it will go
to its business of learning a linear separator�a plane�within that 3D space. However, because we
have projected the original dataset onto a curved surface, the only relevant part of that plane with
regards to separating the data is the intersection between the plane and the curved surface; and
this can be a curved line. Figure 6.11 shows a plane intersecting the curved surface, and the inset
graph in that �gure shows the projection of that intersection back onto the (x, y) plane: a non-linear
separator.

In practice, when the base feature set is already a fairly high-dimensional space (a few lexical
features will easily put a binary feature set into the hundreds of thousands of features), it would
be prohibitively expensive to generate conjunction features for every pair of them. Hence we need
some way of simulating them without actually generating them: enter kernels.

In general, a kernel expresses the similarity between two stimuli x and y. The kernel function
K(x,y) must be rewritable as a dot product Φ(x) · Φ(y), where Φ is some function that returns
a vector as output. It is used as a replacement for the simple dot product ck · ci in the dual-form
algorithm (Figures 6.8 and 6.9 on page 39). If Φ is the identity function, then the kernel algorithm
is exactly the dual form algorithm.

As a �rst pass at a conjunction-based Φ, we might try
Φ(x) = 〈x0, x1, x2, . . . , xf , x0x1, x0x2, . . . , xf−2xf−1, xf−1xf 〉 ,

that is, a list of all the individual features, followed by an all-pairs list of feature products. But of
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course this su�ers from the problem mentioned above: it is prohibitively expensive when f is likely
to be on the order of 100,000. Instead, Freund and Schapire propose the following Φ:

Φ(x) =
〈
1,
√

2x0,
√

2x1, . . . ,
√

2xf ,
√

2x0x1,
√

2x0x2, . . . ,
√

2xf−1xf , x2
0, x

2
1, . . . , x

2
f

〉
.

This somewhat more complicated Φ function yields the following kernel:
K(x,y) = Φ(x) · Φ(y)

= 1 + 2x0y0 + · · ·+ 2xfyf + 2x0x1y0y1 + · · ·+ 2xf−1xfyf−1yf + x2
0y

2
0 + · · ·+ x2

fy2
f

= (1 + x0y0 + x1y1 + · · ·+ xfyf )2

= (1 + x · y)2

This can be calculated directly from the feature vectors, with essentially no extra work. More
generally, the expression (1 + x · y)d is a d-dimensional kernel that enables the perceptron to learn
polynomial separators of degree d.

Unfortunately, a side e�ect of using the kernel-based perceptron with higher-dimensional ker-
nels is that the dual form must be used even for training; which makes the training algorithm
O(mfMn)�again, m and f are roughly constant factors, but Mn is essentially an n2 term. Un-
desirable at best when working with a training set in the 780K range�the datasets on which these
techniques were developed tended to fall in the 40�50K range(Freund and Schapire, 1999). The
good news is that the performance increase on the higher-dimensional kernels makes these run con-
siderably faster than a d = 1 kernel training run, but it is still extremely slow, taking anywhere
from a day (on the syntactic tagging problem) to a week (on the semantic tags). Testing time is
comparable to that for the voted perceptron, ranging from two to twelve hours.

6.5 Feature sets

The feature sets we employed can be divided into three main groups�the minimalist sets, the basic-
plus sets, and the full sets. For the minimalist sets, we have just a few features employed: typically
the label and head of the constituent under consideration (�self�), plus one or two other features. The
features used in the minimalist sets are grouped together into the �basic� set, and then the basic-plus
sets are the entire basic set plus one or two extra features. Finally, some runs were performed on
sets using all or nearly all of the features available to the system. The exact breakdown is shown
in Table 6.2 on page 44. Some abbreviations used in that table are given in Table 6.1 on the next
page.

6.6 Results

We ran the basic perceptron over a number of di�erent feature sets, attacking both the syntactic
and semantic tags. For the larger feature sets (and the harder problems), it sometimes took awhile
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parlab parent's label
par parent's label and head
siblab siblings' labels
sib siblings' labels and heads
gp grandparent's label and head
ccp ccparent
twosib labels of siblings at distance 2
psm parent's semantic tag
alt self's alt head

Table 6.1: Abbreviations used in feature set names
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Figure 6.12: Basic perceptron using ecbasic feature set for semantic tags
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Self
Parent

Grandpar
Leftsib

Rightsib

labelhead POSheadalt head POSalt headis auxsyn/sem taglabelcc-labelhead POSheadis auxsem taglabelhead POSheadis auxlabelhead POSheadis auxlabelhead POSheadis aux2nd-left sib label
2nd-right sib label

self
•
•
•

self+parlab
•
•
•

•
self+par

•
•
•

•
•
•

self+siblab
•
•
•

•
•

self+sibs
•
•
•

•
•
•

•
•
•

self+gp
•
•
•

•
•
•

ecbasic-ccp-gp
•
•
•

•
•
•

•
•

ecbasic-ccp
•
•
•

•
•
•

•
•
•

•
•
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60 65 70 75 80
F-measure

ecbasic
ecbasic + alt head

Figure 6.13: Performance of the basic perceptron on the semantic tags, given similar feature sets

for the training to really �take hold�, but typically by the end of the �fth epoch, the training had
converged as much as it ever would. To measure this, we saved the weights after every 250,000
training constituents (about a third of an epoch), and then re-ran the testing algorithm on the
development corpus with each of those weights in turn. A plot of the results of this process on
a representative problem is given in Figure 6.12 on page 43. In this graph we can see that the
algorithm quickly (before the �rst test run) learns the easy examples, then takes a few epochs to
learn the slightly harder cases, before settling into a six-point �uctuation around 64%.

It is worth noting that the scatter does indeed seem to be normally distributed. We can plot
a histogram of the system's performance, and an overlay of the corresponding normal distribution
usually seems to be a good �t, as in Figure 6.13. In this particular �gure, we can clearly see that
despite some overlap, adding the `alt head' feature is a big win when attacking the semantic tagging
problem.

For the �rst round of tests, we used a variety of di�erent combinations of features in the algorithms
that run fast. Speci�cally, we ran the basic algorithm in Figure 6.4 on page 36 on the training set�
sections 2�21 of the WSJ portion of the Penn Treebank II�until we had seen each constituent
twenty times, recording the weights at the end of every epoch as well as after 250K, 500K, and 750K
constituents of the epoch. We threw out the early weights vectors for each training set, on the basis
that the perceptrons had not been fully trained yet; for the threshold we arbitrarily picked the end
of the �fth epoch. With the weights vectors that remained, then, we ran the basic testing algorithm
(Figure 6.5) on the entire development corpus (section 24). This yielded 61 scores, of which we
report the mean precision, recall, and F-measure, and the standard deviation on the F-measure, in
Table 6.3 on the next page. We then used these 61 weights vectors in our sparse voted perceptron as
described in Section 6.3.1 above, yielding the precision, recall, and F-measure results also reported
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Syntactictags
basic

sparsevoted
µ

P
µ

R
µ

F
σ

F
P

R
F

54.42
29.75

37.87
3.31

65.20
29.39

40.51
89.49

85.87
87.46

2.07
96.72

85.52
90.77

95.62
95.30

95.43
0.53

96.39
96.74

96.57
85.25

79.28
81.71

2.98
91.62

82.36
86.74

93.12
91.77

92.29
1.29

95.56
93.44

94.49
76.91

80.43
78.21

2.34
86.98

79.71
83.19

96.44
97.10

96.75
0.46

97.54
98.21

97.87
97.52

97.50
97.50

0.49
98.60

98.50
98.55

97.37
97.71

97.52
0.52

98.44
98.53

98.48
98.05

97.74
97.89

0.38
98.73

98.60
98.66

97.94
97.61

97.77
0.32

98.53
98.40

98.47
97.56

98.19
97.87

0.53
98.57

98.73
98.65

97.63
97.74

97.68
0.36

98.60
98.47

98.53
97.82

97.32
97.55

0.48
98.60

98.50
98.55

97.55
97.97

97.75
0.40

98.44
98.73

98.58
98.11

97.70
97.90

0.30
98.66

98.37
98.51

98.06
97.77

97.91
0.33

98.60
98.43

98.52
97.84

98.36
98.10

0.30
98.70

98.76
98.73

94.94
93.98

94.42
0.85

96.67
94.68

95.67
98.07

98.24
98.15

0.35
98.92

98.63
98.78

98.26
98.34

98.29
0.22

98.86
98.76

98.81

Semantictags
basic

sparsevoted
µ

P
µ

R
µ

F
σ

F
P

R
F

self
48.05

44.69
45.71

7.28
61.69

46.34
52.93

self+parlab
54.66

54.29
53.80

3.87
70.43

54.15
61.22

self+par
64.09

62.89
63.29

1.50
71.98

65.02
68.32

self+siblab
57.31

59.77
58.25

2.59
69.50

56.59
62.38

self+sibs
59.83

59.68
59.11

3.24
69.82

60.49
64.82

self+gp
56.12

51.00
53.14

2.51
65.40

52.83
58.45

ecbasic-ccp-gp
66.03

64.90
65.35

1.48
73.00

67.12
69.94

ecbasic-ccp
64.70

62.83
63.56

1.60
72.67

65.12
68.69

ecbasic
65.44

63.21
64.07

1.36
73.34

65.37
69.13

ecbasic+sm/sy
66.81

63.11
64.66

1.86
73.61

65.02
69.05

ecbasic+sibs
66.79

61.87
63.80

1.83
73.58

64.54
68.76

ecbasic+twosib
65.76

63.47
64.25

2.22
73.20

67.02
69.98

ecbasic+psm
66.85

62.35
64.24

1.84
74.96

64.39
69.27

ecbasic+aux
66.49

63.51
64.67

1.82
74.26

65.85
69.80

ecbasic+allaux
65.78

62.26
63.59

2.00
74.38

64.44
69.05

ecbasic+alt
76.62

68.38
72.00

2.15
83.43

72.44
77.55

ecbasic+aux+alt
77.33

67.49
71.77

2.25
83.90

72.68
77.89

fullcorp2-ccp
75.95

70.52
72.80

2.38
82.36

75.17
78.60

fullcorp2-lex
50.83

38.55
41.99

6.64
63.01

40.39
49.23

fullcorp2
77.08

69.61
72.92

1.92
81.76

73.71
77.53

fullcorp2+sm/sy
75.97

71.49
73.44

2.07
82.06

75.17
78.46

Table6.3:Resultsofthebasicperceptronandsparsevotedperceptron,after20epochsoftraining,testedonsection24
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Syntactic Semantic
P R F time time P R F

96.29 95.56 95.92 2h43m self+par 11h33m 73.33 59.95 65.97
98.97 96.93 97.94 1h51m ecbasic 13h26m 74.89 59.66 66.41
99.01 97.49 98.24 1h54m ecbasic+alt 10h47m 81.63 64.59 72.11
99.07 97.55 98.31 2h35m fullcorp2 19h22m 82.00 64.63 72.01

Table 6.4: Voted perceptron results
nonvoted voted

P R F P R F
Syntactic

self+par d = 2 95.26 96.3 95.8 97.1 96.0 96.5
ecbasic d = 2 97.58 97.4 97.5 99.0 97.8 98.4
ecbasic d = 3 97.59 97.7 97.6 98.9 98.1 98.5
ecbasic d = 5 99.0 98.4 98.7 98.9 98.1 98.5
ecbasic+alt d = 2 96.73 96.5 96.6 98.7 97.8 98.2
fullcorp2 d = 2 98.09 97.4 97.7 99.0 97.8 98.4

Semantic
ecbasic d = 2 83.5 73.2 78.0 83.7 71.9 77.3

Table 6.5: Kernel perceptron results

in Table 6.3.
Due to the expense, we did not run the true voted perceptron algorithm on all of our feature

sets, merely picking a representative few. Runs are based on the alpha values after just one epoch of
training. Table 6.4 contains the results of these experiments. The results are lower in almost every
case than those for the sparse voted perceptron (henceforth SVP); but this is to be expected, as
the SVP had access to fully twenty epochs of training, and indeed completely ignored all the early
�rst-epoch weight vectors, upon which the voted perceptron is relying.

Again with the kernel perceptron, we have chosen just a few feature sets on which to gather
statistics. We trained on a single epoch through the training sections, then ran the testing algorithm
both with and without voting. The results are reported in Table 6.5. Predictably, the results are
much better now that feature conjunctions are in play; but we ran even fewer tests here, especially
on the semantic tags, as the training stage was prohibitively long. While normally a lengthy training
phase is not a huge cause for concern (since real applications only train once), the training phase on
the semantic tags was on the order of weeks, making repeated trials di�cult at best.

To close out this chapter, we present a breakdown of the results of the SVP run trained on feature
set fullcorp2-ccp, according to how the tagger does on each tag, in Table 6.6 on the following page.
We did not run sparse voting on any of the kernel-based tests�since the kernel algorithm requires
checking each training example anyway, there is no reason not to consider all votes.
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Syntactic
P R F

DTV 72.22 86.67 78.79
LGS 88.12 90.82 89.45
PRD 97.68 97.20 97.44
PUT 83.33 90.91 86.96
SBJ 99.70 99.74 99.72
SBJ 99.70 99.74 99.72
VOC 00.00 00.00 00.00

Semantic
P R F

ADV 77.47 80.10 78.76
BNF 00.00 00.00 00.00
DIR 79.52 53.66 64.08
EXT 79.25 80.77 80.00
LOC 79.46 70.89 74.93
MNR 75.61 56.36 64.58
NOM 93.85 93.13 93.49
PRP 68.81 71.43 70.09
TMP 87.50 80.62 83.92

Table 6.6: SVP results with fullcorp2-ccp training, broken down by tag



Chapter 7

Analysis

In this chapter we will attempt to interpret the results given earlier in this thesis; we also include a
number of results from smaller experiments designed to highlight di�erences among systems, among
feature combinations, or among some other sets of execution parameters.

7.1 Feature trees vs. perceptrons

We can compare our di�erent systems on a number of di�erent metrics. The main ones we will
speci�cally consider are training and testing time, and accuracy.

The feature tree system can run its entire training algorithm in just under two and a half minutes
on a 1.5GHz Linux box. The fast perceptron training runs through a single epoch in about four or
�ve minutes, handling a twenty-epoch run in about an hour. The slower dual perceptron training
algorithm requires a day or two for the `easy' problems, such as syntactic tagging, and over a week
for the `hard' problems, such as semantic tagging. The training algorithm time is not the most
important point of comparison, of course; on a system in actual use, the training need only be run
once.

Trading o� extremely long training times for shorter test runs makes a great deal of sense in
practice, but is not applicable here. In none of the algorithms we tested was there a way to expend
more training time to speed up the testing. The `slow' perceptron algorithms took forever to train,
but also forever to test�on the order of an hour or two up to nine or ten hours, just to tag a
short, 1400 sentence test corpus. This is simply not a realistic amount of time in which to apply
the algorithm. The fast perceptrons fared better�at about six minutes for the test corpus (either
easy or hard problems), the tagger approaches real time performance. Feature trees fare better still,
requiring just 45 seconds to tag the entire test corpus.

So the feature trees win on speed, with fast perceptrons running a respectable second. What
of the accuracy of these systems? Here the results appear to swing the other direction. System
performance obviously depends on the features actually used, but even with relatively few features
in play, the fast PMV perceptron is competitive with the best feature tree models on the syntactic
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tagging task. With all the features available to it, the perceptron model considerably outperforms
anything else on this task.

The semantic task does not provide quite such clear-cut results; perhaps unsurprisingly, the
perceptron model requires more features to match the feature trees' performance. But in the end,
it remains competitive with the feature tree model.

Other, more minor, considerations come into play for the discriminating customer, choosing
between these two systems for function tagging. We will consider two in particular. First of all, ap-
plications of NLP that require language models have recently been using more complex models than
the traditional trigrams; using syntactic structure has become quite popular. It is thus reasonable
to hope to integrate function tagging into language modelling. However, this requires each output to
have a probability associated to it, or something that can be normalised into a probability: perfect
for the feature trees, but the perceptron model is not at all amenable to this.

Secondly, for the user of a function tagger, there are implementation concerns. While neither
system is excessively complex, perceptrons are signi�cantly simpler. A researcher who hopes to
make use of a function tagger, and already has a separate parser, may �nd that the extreme ease
of coding up the perceptron model may outweigh other concerns. On the other hand, if the parser
needs to be coded as well, a combined parser and function tagger can use virtually all of the same
underlying feature tree framework, so this may swing the balance over to the feature trees, despite the
performance loss in the syntactic tagging. (Realistically, of course, most users of this will probably
just �nd an existing implementation.)

And where do decision trees �t in all of this? Based on the performance of the c4.5 package,
it appears that the training process is much slower than feature trees, if not quite so long as the
slow dual perceptron training (used for voted perceptrons and kernel perceptrons). The testing
process ranks similarly. Its performance is a slight improvement on the syntactic tags over the
feature trees, and a loss on the semantic tags; neither is as good as the best perceptron performance,
even restricting view to the fast perceptrons. While not inherent to the model, decision trees
often yield probabilistic results, and hence could be used for language modelling. Generally, it
is mediocre relative to the others�not crashingly bad, but not an improvement�and its extreme
memory requirements make it unsuitable for actual use.

7.2 Helpful features

Simple knowledge about the active constituent, the �self�, is not su�cient. On syntactic tags, just
knowing the self's label and head will grant performance in the 40% range. Knowing just the label
of either the parent or the adjacent siblings is crucial; this will improve performance into the 90s�
knowing labels of parents and siblings, as well as the parents' head, will push performance nearly
as high as it can go. Adding information about the grandparent can give another half a percentage
point, but more exotic features did not signi�cantly improve performance at all.

On the semantic tags, the pattern is similar, but not quite the same. The initial bar is a little
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bit higher�knowledge about self only will start a system out at 53%�but the end result isn't
nearly as high. Again, adding parent and/or sibling information is important, bringing performance
into the mid-60s, but the grandparent is not helpful here. In fact, adding the grandparent hurts
performance slightly; this can be attributed to the fact that it adds noise to the system without
bringing any concomitant improvement. Beyond the parents and siblings, the most useful single
gain is clearly found by attending to the alt head: any serious work on semantic tagging should
include this feature or one like it. Other features gave small but noticeable improvements, of which
the largest (and perhaps the most surprising) came from attending to the nonadjacent siblings,
which improved performance on the development corpus by over a percentage point. Each of the
extra features seems to contribute di�erent information; using them all together does improve the
aggregate performance.

Finally, ignoring the lexical features will approximately double the error rate of the system. In
the case of syntactic tags, this may be an acceptable loss, as the resulting system still yields nearly
96% accuracy; but this brings semantic tag performance below 50%, clearly not useful for any real
application.

7.3 Related work

We now return to some of the systems presented in Section 2.2, reporting their results and comparing
them to our own to the extent that that is possible.

7.3.1 Collins (1997)

The system Collins used to detect complements is a simple lexicalised generative model, and the
complement-marking is performed as an intermediate step in parsing. The features used are the
parent's label and head, the label of the sibling that contains the parent's head, the current con-
stituent's distance from that sibling, and the subcategorisation frame of that sibling (which has
been previously guessed based on the parent's label and head and the label of the head-containing
sibling).

Since this is intended primarily as a way to improve performance in the parsing task, Collins
does not report the accuracy of the complement-marking, so we are unable to directly compare our
work to his. He does note, however, that inserting this step causes a .7% increase in labelled recall
and .5% in labelled precision for the parsing task.

7.3.2 Brants, Skut, and Krenn (1997)

The work of Brants et al. (1997) is much easier to compare, however. While there is not an exact
match between the information recovered by their system and our systems, there is a great deal of
overlap; with certain caveats, we are prepared to compare these results with our syntactic tagging
results.
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He has not yet seen Regine.

S

Figure 7.1: A sample sentence with NEGRA-style annotation

Their system works with the NEGRA tagset (see Section 2.2.2), which has many more function
tags than the Penn treebank; every constituent has exactly one function tag in this system. Their
algorithm relies to some extent on this �ner granularity of function tags: they use an order-2 Markov
model whose states correspond to the tags themselves. A separate model is trained for each phrasal
category, representing the `parent' of a group of dependencies. The model then moves from state to
state (where, again, the states correspond to function tags), emitting the phrasal category labels of
the dependent nodes.

For example, on the sentence in Figure 7.1, one model would be trained for S nodes. From the
start state, the model moves to the SB (`subject') state with a certain probability, conditioned on
the parent (S) and the fact it was the �rst child. The model then emits the PPER (pronoun) label
with a probability based on the parent (S) and the function tag (SB). The model then moves to
the HD state, emits VAFIN, and so on. The last state (OC) emits a VP label, and then the model
transitions to its stop state with a probability conditioned on the parent (S) and the preceding two
function tags (NG, OC). A separate model is consulted to generate the children of the VP node.

Having a function tag on every constituent eliminates any precision-recall tradeo� issues they
might have had. It makes their job a bit harder, in that they have more tags (45) to work with; but it
also makes their job a bit easier, because many tags will be easy to predict from context�sometimes
even deterministically. The Penn treebank, by and large, prefers to leave such constituents untagged.

For instance, we note that their best performance is on tagging the children of PP nodes (on which
their accuracy was 97.9%, and which comprise 24% of the data). This is almost certainly because
the possible expansions of a PP are relatively constrained�it appears that the vast majority of
prepositional phrases in their system will expand to an AC (`adpositional case marker') followed by
one or more NKs (`noun kernels'). Comparable phrases in the Penn treebank will have no function
tags at all.

A better comparison might be drawn between the F-measure of our syntactic tags (99.0%) and
their performance on children of S nodes (89.1%, comprising 26% of the data). Here there are
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Blaheta
No-null precision 96.8%
No-null recall 95.6%
No-null F-measure 96.2%
With-null accuracy 99.1%

Brants, Skut, and Krenn
PP children 97.9%
S children 89.1%
Overall accuracy 94.2%

Table 7.1: A comparison between our work and Brants et al

myriad expansion possibilities, and rather more possible function tags to apply. Four of the �ve tags
shared between the two systems (our SBJ, DTV, PRD, VOC; their SB, DA, PD, VO) will in their
system almost always be found on children of S nodes.

Perhaps, in the end, the best comparison would be between their overall accuracy (94.2%) and
our `with-null accuracy' percentage (99.8%), since it takes into account every time we correctly
decide to not tag something, which corresponds to a decision in their system to tag a constituent
with a non-Penn-treebank tag. On the other hand, this e�ectively collapses all non-Penn-treebank
tags into one tag for us but not for them, which would give us an unfair advantage.

A summary of these results can be seen in Table 7.1.

7.3.3 Preiss (2003)

In her 2003 EACL paper, Preiss attempts to compare several di�erent parsers according to the
`grammatical relations' metric (Carroll et al., 1998). In order to evaluate the Charniak (2000) and
Collins (1996; 1997) parsers, she manually created a set of deterministic rules for extracting these
relations from a Penn treebank-style tree, as output by these parsers. In the context of this thesis,
we can examine her accuracy results for the Charniak parser and use them to compare her set of
hand-built function tagging rules to our own statistical model.

Again, the tags are not directly comparable, but some have a fairly strong overlap. The ncsubj
grammatical relation corresponds fairly closely to the SBJ tag in the Penn set (strictly, it's a subset�
csubj, xsubj, and subj are su�ciently rare that we can ignore them for the moment). Preiss reports
performance on this tag as 81.80% precision and 70.13% recall. To some extent, this number is
low because of parser error�the Charniak parser only performs at 90% or so accuracy�but the
numbers are still lower than they would be under our statistical function tagger. Multiplying the
parser performance by our own performance on the SBJ tags yields a lower bound of 88.1% precision
and 87.1% recall for this task. This estimate would go up if we factored in that the Charniak
parser probably does better than average on `easy' tasks like the subject nodes (as opposed to, say,
coordination constructions); and the fact that we may in some cases correctly label SBJ constituents
even where the Charniak parser is incorrect.
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Preiss Blaheta (lower bound)
P R P R

ncsubj/SBJ 81.8 70.1 88.1 87.1
ncmod/sem. tags 79.8 46.3 82.1 72.1

Table 7.2: Comparison against Preiss hand-built tagger

A similar lower bound can be derived for the ncmod tag, which corresponds approximately to
all semantic tags other than NOM; here Preiss reports 79.84% precision and just 46.32% recall,
but an estimate against our semantic tag performance (ignoring mistags) gives 82.1% precision and
72.1% recall. Mistags are ignored because ncmod is not sensitive to distinctions between our semantic
tags�hence a mistag, such as applying TMP instead of LOC, should count as correct for the purposes
of ncmod. This is still a lower bound, for all the reasons given in the previous paragraph. This Preiss
comparison is summarised in Table 7.2.

7.3.4 Gildea and Jurafsky (2002)
Gildea and Jurafsky (2002) developed a system to recover the frame element annotation from the
FrameNet corpus. (See Section 2.2.4.) As with our system, they make use of syntactic structure
for this task; the system is a straightforward empirically-trained statistical model, with each guess
conditioned on a small number of features.

The features they used were the phrase label, head word, `governing category', `position', `voice',
and `parse tree path'. The �rst two are essentially as de�ned in our system. The governing category
is similar to a parent label; but it is only de�ned for NP constituents, and its value is always S or
VP�if the parent is neither of those, a search commences up the tree until one is found. This search
is meant to counteract parser attachment error and coordinating constructions; it is not clear how
PP nodes play out for this label. The position is binary, and simply indicates whether a constituent
is to the left or right of its governing predicate. Voice indicates whether a verb (presumably again
the governing predicate) is active or passive. Finally, a parse tree path records the path through
the parse tree from the governing predicate to the current constituent�it is a string containing the
label of each node along that path, and an indication for each edge whether the path is travelling
up the tree or down. (A sample path given for a sentence subject is �VB↑VP↑S↓NP�.)

The actual system calculates eight conditional distributions, of varying levels of speci�city, ac-
cording to empirical observations. These eight distributions are interpolated to calculate the �nal
distribution; the system's performance is then 78.5%, assuming that the locations of the frame el-
ements are given as input to the algorithm. A separate algorithm to �rst �nd the frame element
boundaries scores 66% perfect accuracy plus another 15% partially correct. A system that combines
the two tasks�and is thus more comparable to our own�achieves 64.6% precision and 61.2% re-
call. (Note that these numbers do account for parser error as well�a misparsed frame element is a
guaranteed error for the system, yielding a theoretical maximum around 90%.)

One of the main problems in comparing our work to Gildea and Jurafsky has been that with
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Gildea & Jurafsky Blaheta (lower bound)
Role/Tag P (Known) R (Unknown) P (Unknown) R (Unknown)
Agent 92.8 76.7
SBJ 88.02 86.90
LGS 79.98 79.89

Manner/MNR 70.4 48.6 63.83 61.75
Location/LOC 63.3 47.6 79.65 74.40
Total 82.1 63.6
Syntactic 86.43 85.32
Semantic 77.67 71.85

Table 7.3: Some results from Gildea and Jurafsky (2002)

so many more possible tags, the di�culty of the task was hard to estimate. In their 2002 journal
article, however, they publish the results of an experiment where they map all the frame element
tags into a set of 18 roles, which they used to train a system and then test; this make the system
more like the other function tagging tasks we have seen. Several of these are comparable to some
of the Penn function tags, and some of them are reported in Table 7.3. In this table, their precision
is based on a run where the frame element boundaries were known, but the recall is based on a run
where the frame element boundaries were not known in advance. For our own results, it was not
known in advance which constituents had function tags, but those elements that were misparsed
were originally discarded from the evaluation�to make the comparison more fair, we have again
reported our score as a lower bound, calculated by multiplying our own performance by the parser
accuracy of 89.5%. This is almost certainly signi�cantly lower than the actual performance on these
tasks. A further consideration is that their tags are only placed on complements, while the majority
of the Penn semantic tags (e.g. MNR, LOC) are on adjuncts�not subcategorised by the verb, and
therefore harder to guess. Even so, we do very well on recall and comparably on precision.

7.4 Error analysis and �xing the treebank

In the course of our research, we wanted to attain some understanding of what sort of errors the
system was making. While still working primarily with the feature tree system, we took the output
of the system and examined each error, determining whether the error was in the algorithm or in

Algorithm error 44%
Parse error 20%
Treebank error 18%
Type C error 13%
Dubious 6%

Table 7.4: Analysis of reported errors
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Figure 7.2: SBAR and conditioning info

the treebank, or elsewhere, as reported in Table 7.4. Of the errors we examined, less than half were
due solely to an algorithmic failure in the function tagger itself. The next largest category was parse
error: this function tagging algorithm requires parsed input, and in these cases, that input was
incorrect and led the function tagger astray; had the tagger received the treebank parse, it would
have given correct output. In just under a �fth of the reported �errors�, the algorithm was correct
and the treebank was de�nitely wrong. The remainder of cases we have identi�ed either as Type C
errors�wherein the tagger agreed with many training examples, but the �correct� tag agreed with
many others (see Section 7.6.3)�or at least �dubious�, in the cases that weren't common enough to
be systematic inconsistencies but where the guidelines did not clearly prefer the treebank tag over
the tagger output, or vice versa.

7.5 Parse error

It may at �rst seem strange that so many reported errors would be due to parse error, since (as stated
in Section 2.4) we only count correctly parsed constituents in our evaluation. However, although
the constituent itself may be correctly bracketed and labelled, its exterior conditioning information
can still be incorrect. An example of this that actually occurred in the development corpus (again,
Section 24 of the treebank) is the `that' clause in the phrase �can swallow the premise that the rewards
for such ineptitude are six-�gure salaries�, correctly diagrammed in Figure 7.2. The function tagger
gave this SBAR an ADV tag, indicating an unspeci�ed adverbial function. This seems extremely
odd, given that its conditioning information (nodes circled in the �gure) clearly show that it is part
of an NP, and hence probably modi�es the preceding NN. Indeed, the statistics give the probability
of an ADV tag in this conditioning environment as vanishingly small.

However, this was not the conditioning information that the tagger received. The parser had
instead decided on the (incorrect) parse in Figure 7.3 on the facing page. As such, the tagger's
decision makes much more sense, since an SBAR under two VPs whose heads are VB and MD is
indeed rather likely to be an ADV. (For instance, the `although' clause of the sentence �he can help,
although he doesn't want to.� has exactly the conditioning environment given in Figure 7.3, except
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that its left sibling is a comma; and such an SBAR would be correctly tagged ADV.) The SBAR itself
is correctly bracketed and labelled, so it still gets counted in the statistics. In fact, since the only
requirement for an individual constituent to be �correct� is that it have the correct label and subtend
the correct portion of the sentence, every single other conditioning event could (in theory) be wrong!
Actual occurrences aren't so extreme, but are su�ciently frequent that they are a signi�cant source
of error.

7.6 Treebank error

Another thing that lowers the overall performance somewhat is the existence of error and inconsis-
tency in the treebank tagging. Performed by humans, the annotation inevitably has errors in it. We
have designed a taxonomy for cataloguing corpus errors and some guidelines for correcting them,
�rst published in (Blaheta, 2002).

7.6.1 Type A: Detectable errors

The easiest errors, which we have dubbed �Type A�, are those that can be automatically detected
and �xed. These typically occur when there would be multiple reasonable ways of tagging a cer-
tain interesting situation: the markup guidelines arbitrarily choose one, and the human annotator
unthinkingly uses the other.

The canonical example of this sort of thing is the treebank's LGS tag, representing the �logical
subject� of a passive construction. It makes a great deal of sense to put this tag on the NP object
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of the `by' construction; it makes almost as much sense to tag the PP itself, especially since (given
a choice) most other function tags are put there. The treebank guidelines speci�cally choose the
former: �It attaches to the NP object of by and not to the PP node itself.� (Bies et al., 1995)
Nevertheless, in several cases the annotators put the tag on the PP, as shown in Figure 7.4. We
can automatically correct this error by algorithmically removing the LGS tag from any such PP and
adding it to the object thereof.

The unifying feature of all Type A errors is that the annotator's intent is still clear. In the LGS
case, the annotator managed to clearly indicate the presence of a passive construction and its logical
subject. Since the transformation from what was marked to what ought to have been marked is
straightforward and algorithmic, we can easily apply this correction to all data.

7.6.2 Type B: Fixable errors

Next, we come to the Type B errors, those which are �xable but require human intervention at some
point in the process. In theory, this category could include errors that could be found automatically
but require a human to �x; this doesn't happen in practice, because if an error is su�ciently
systematic that an algorithm can detect it and be certain that it is in fact an error, it can usually be
corrected with certainty as well. In practice, the instances of this class of error are all cases where
the computer can't detect the error for certain. However, for all Type B errors, once detected, the
correction that needs to be made is clear, at least to a human observer with access to the annotation
guidelines.

Certain Type B errors are moderately easy to �nd. When annotators misunderstand a com-
plicated markup guideline, they mismark in a somewhat predictable way. While not being totally
systematically detectable, an algorithm can leverage these patterns to extract a list of tags or parses
that might be incorrect, which a human can then examine. Some errors of this type (henceforth
�Type B1�) include:
• VBD / VBN. Often the past tense form of a verb (VBD) and its past participle (VBN) have the
same form, and thus annotators sometimes mistake one for the other, as in Figure 7.5. Some
such cases are not detectable, which is why this is not Type A.1

1There is a subclass of this error which is Type A: when we �nd a VBD whose grandparent is a VP headed by a
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• IN / RB / RP. There are speci�c tests and guidelines for telling these three things apart, but
frequently a preposition (IN) is marked when an adverb (RB) or particle (PRT) would be more
appropriate. If an IN is occurring somewhere other than under a PP, it is likely to be a mistag.

Occasionally, an extracted list of maybe-errors will be �perfect�, containing only instances that
are actually corpus errors. This happens when the pattern is a very good heuristic, though not
necessarily valid (which is why the errors are Type B1, and not Type A). When �ling corrections
for these, it is still best to annotate them individually, as the corrections may later be applied to an
expanded or modi�ed data set, for which the heuristic would no longer be perfect.

Other �xable errors are pretty much isolated. Within section 24 of the treebank, for instance,
we have:
• the word `long' tagged as an adjective (JJ) when clearly used as a verb (VB)
• the word `that' parsed into a noun phrase instead of heading a subordinate clause, as in
Figure 7.6

• a phrase headed by `about', as in `think about', tagged as a location (LOC)
These isolated errors (resulting, presumably, from a typo or a moment of inattention on the part
of the annotator) are not in any way predictable, and can be found essentially only by examining
the output of one's algorithm, analysing the �errors�, and noticing that the treebank was incorrect,
rather than (or in addition to) the algorithm. We will call these Type B2.

7.6.3 Type C: Systematic inconsistency
Sometimes, there is a construction that the markup guidelines writers didn't think about, didn't
write up, or weren't clear about. In these cases, annotators are left to rely on their own separate
intuitions. This leaves us with markup that is inconsistent and therefore clearly partially in error,
but with no obvious correction. There is really very little to be done about these, aside from noting
them and perhaps controlling for them in the evaluation.

Some Type C errors in the treebank include:
form of `have', we can deterministically retag it as VBN.
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• `ago'. English's sole postposition seems to have given annotators some di�culty. Lacking a
postposition tag, many tagged such occurrences of `ago' as a preposition (IN); others used the
adverb tag (RB) exclusively.2 Since some occurrences really are adverbs, this just makes a big
mess.
• ADVP-MNR. The MNR tag is meant to be applied to constituents denoting manner or in-
strument. Some annotators (but not all) seemed to decide that any adverbial phrase (ADVP)
headed by an `-ly' word must get a MNR tag, applying it to words like `suddenly', `signi�cantly',
and `clearly'.

The hallmark of a Type C error is that even what ought to be correct isn't always clear, and as a
result, any plan to correct a group of Type C errors will have to �rst include discussion on what the
correct markup guideline should be.

7.6.4 tsed
In order to e�ect these changes in some communicable way, we have implemented a program called
tsed, by analogy with and inspired by the already prevalent tgrep search program.3 It takes
a search pattern and a replacement pattern, and after �nding the constituent(s) that match the
search pattern, modi�es them and prints the result. For those already familiar with tgrep search
syntax, this should be moderately intuitive. The program is similar in spirit to patch, another
standard utility; but where patch works on a line level, tsed works on a more abstract tree level.
Using patch for our purposes would only work on a single version of a treebank; even a di�erently
pretty-printed version could not be properly patched, and writing mergeable patches for versions
of the treebank that may or may not have been previously patched would be impossible. This
shortcoming is overcome with tsed.

To the basic pattern-matching syntax of tgrep, we have added a few extra restriction patterns
(for specifying sentence number and head word), as well as a way of marking nodes for later ref-
erence in the replacement pattern (by simply wrapping a constituent in square brackets instead of
parentheses).

The replacement syntax is somewhat more complicated, because wherever possible we want to
be able to construct the new trees by reference to the old tree, in order to preserve modi�ers and
structure we may not know about when we write the pattern. For full details of the program's
abilities, consult the program documentation, but here are the main ones:
• Relabelling. Constituents can be relabelled with no change to any of their modi�ers or children.
• Tagging. A tag can be added to or removed from a constituent, without changing any modi�ers
or children.

2In particular, the annotators of sections 05, 09, 12, 17, 20, and 24 used IN sometimes, while the others tagged all
occurrences of `ago' as adverbs.

3tgrep was written by Richard Pito of the University of Pennsylvania, and comes with the treebank.
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• Reference. Constituents in the search pattern can be included by reference in the replacement
pattern.
• Construction. New structure can be built by specifying it in the usual S-expression format,
e.g. (NP (NN snork)). Usually used in combination with Reference patterns.

Along with tsed itself, we distribute a Perl program wsjsed to process treebank change scripts
like the following:
{2429#0-b}<<EOF
NP $ [ADJP] > (VP / keep) (S \0 \1)
NP <<, markets - SBJ
EOF
This script would make a batch modi�cation to the zeroth sentence of the 29th �le in section 24. The
batch includes two corrections: the �rst matches a noun phrase (NP) whose sister is an ADJP and
whose parent is a VP headed by the word `keep'. The matched NP node is replaced by a (created)
S node whose children will be that very NP and its sister ADJP. The second correction then �nds
an NP that ends in the word `markets' and marks it with the SBJ function tag.

Distributing changes in this form is important for two reasons. First of all, by giving changes in
their minimal, most general forms, they are small and easy to transmit, and easy to merge. Perhaps
more importantly, since corpora are usually copyrighted and can only be used by paying a fee to the
controlling body (usually LDC or ELDA), we need a way to distribute only the changes, in a form
that is useless without having bought the original corpus. Scripts for tsed, or for wsjsed, serve this
purpose.

These programs are available from our website.4 More complete documentation on tsed can be
found in Appendix B.

7.6.5 Training data
In virtually all empirical NLP work, the training set is going to encompass the vast majority of the
data. As such, it is usually impractical for a human (or even a whole lab of humans) to sit down
and revise the training. Type A errors can be corrected easily enough, as can some Type B1 errors
whose heuristics have a high yield. Purely on grounds of practicality, though, it would be di�cult
to e�ect signi�cant correction on a training set of any signi�cant size (such as for the treebank).

Practicality aside, correcting the training set is a bad idea anyway. After expending an enormous
e�ort to perfect one training set, the net result is just one correct training set. While it might make
certain things easier and probably will improve the results of most algorithms, those improved results
will not be valid for those same algorithms trained on other, non-perfect data; the vast majority of
corpora will still be noisy. If a user of an algorithm, e.g. an application developer, chooses to perfect a
training set to improve the results, that would be helpful, but it is important that researchers report

4http://www.cs.brown.edu/�dpb/tsed/
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results that are likely to be applicable more generally, to more than one training set. Furthermore,
robustness to errors in the training, via smoothing or some other mechanism, will also make an
algorithm robust to sparse data (that ever-present spectre that haunts nearly every problem in the
�eld); thus eliminating all errors in the training ought not to have as much of an e�ect on a strong
algorithm.

7.6.6 Testing data
Testing data is another story, however. In terms of practicality, it is more feasible, as the test set is
usually at least one or two orders of magnitude smaller than the training. More important, though,
is the issue of fairness. We need to continue using noisy training data in order to better model
real-world use, but it is unfair and unreasonable to have noise in the gold standard, which causes an
algorithm to be penalised where it is more correct than the human annotation.

As performance on various tasks improves, it becomes ever more important to be able to correct
the testing data. A `mere' 1% improvement on a result of 75% is not impressive, as it represents
just a 4% reduction in apparent error, but the same 1% improvement on a result of 95% represents
a 20% reduction in apparent error! In the end, a noisy gold standard sets an upper bound of less
than 100% on performance, which is if nothing else counterintuitive.

7.6.7 Ethical considerations
Of course, we cannot simply go about changing the corpus willy-nilly. We refer the reader to
Chapter 7 of David Magerman's thesis (1994) for a cogent discussion of why changing either the
training or the testing data is a bad idea. However, we believe that there are now some changed
circumstances that warrant a modi�cation of this ethical dictum.

First, we are not allowed to look at testing data. How to correct it, then? An initial reaction might
be to �promise� to forget everything seen while correcting the test corpus; this is not reasonable.

Another solution exists, however, which is nearly as good and doesn't raise any ethical questions.
Many research groups already use yet another section, separate from both the training and testing,
as a sort of development corpus.5 When developing an algorithm, we must look at some output for
debugging, preliminary evaluation, and parameter estimation; so this development section is used
for testing until a piece of work is ready for publication, at which point the �true� test set is used.
Since we are all reading this development output already anyway, there is no harm in reading it to
perform corrections thereon. In publication, then, one can publish the results of an algorithm on
both the unaltered and corrected versions of the development section, in addition to the results on
the unaltered test section. We can then presume that a corrected version of the test corpus would
result in a perceived error reduction comparable to that on the development corpus.

Another problem mentioned in that chapter is of a researcher quietly correcting a test corpus,
and publishing results on the modi�ed data (without even noting that it was modi�ed). The solution

5In the treebank, this is often section 24.
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to this is simple: any results on modi�ed data will need to acknowledge that the data is modi�ed
(to be honest), and those modi�cations need to be made public (to facilitate comparisons by later
researchers). For Type A errors �xed by a simple rule, it may be reasonable to publish them directly
in the paper that gives the results.6 For Type B errors, it would be more reasonable to simply
publish them on a website, since there are bound to be a large number of them.7

Finally, we would like to note that one of the reasons Magerman was ready to dismiss error in
the testing was that the test data had �a consistency rate much higher than the accuracy rate of
state-of-the-art parsers�. This is no longer true.

7.6.8 Practical considerations

As multiple researchers each begin to impose their own corrections, there are several new issues that
will come up. First of all, even should everyone publish their own corrections, and post comparisons
to previous researchers' corrected results, there is some danger that a variety of di�erent correction
sets will exist concurrently. To some extent this can be mitigated if each researcher posted both
their own corrections by themselves, and a full list of all corrections they used (including their own).
Even so, from time to time these varied correction sets will need to be collected and merged for the
whole community to use.

More di�cult to deal with is the fact that, inevitably, there will be disputes as to what is correct.
Sometimes these will be between the treebank version and a proposed correction; there will probably
also be cases where multiple competing corrections are suggested. There really is no good systematic
policy for dealing with this. Disputes will have to be handled on a case-by-case basis, and researchers
should probably note any disputes to their corrections that they know of when publishing results,
but beyond that it will have to be up to each researcher's personal sense of ethics.

In all cases, a search-and-replace pattern should be made as general as possible (without being
too general, of course), so that it interacts well with other modi�cations. Various researchers are
already working with (deterministically) di�erent versions of corpora�with new tags added, or
empty nodes removed, or some tags collapsed, for instance, not to mention other corrections already
performed�and it would be a bad idea to distribute corrections that are speci�c to one version of
these. When in doubt, one should favour the original form of the corpus, naturally.

The �nal issue is not a practical problem, but an observation: once a researcher publishes a
correction set, any further corrections by other researchers are likely to decrease the results of the
�rst researcher's algorithm, at least somewhat. This is due to the fact that that researcher is
usually not going to notice corpus errors when the algorithm errs in the same way. This unfortunate
consequence is inevitable, and hopefully will prove minor.

6The rule we used to �x the LGS problem noted in Section 7.6.1 is as follows:
{24*-bg}�EOF
NP !- LGS > (PP - LGS) - LGS
PP - LGS ! LGS
EOF

7The 235 corrections we made to section 24 can be found on our website and in Appendix C.
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Grammatical Precision Recall F-measure
Treebank 96.227% 94.897% 95.558%
Fixed 97.018% 95.137% 96.068%
False error 20.965% 4.703% 11.481%

Form/function Precision Recall F-measure
Treebank 81.224% 76.196% 78.630%
Fixed 86.743% 78.078% 82.182%
False error 29.394% 7.906% 16.621%

Topicalisation Precision Recall F-measure
Treebank 97.115% 93.519% 95.283%
Fixed 99.048% 94.545% 96.744%
False error 67.002% 15.831% 30.973%

Miscellaneous Precision Recall F-measure
Treebank 54.545% 25.000% 34.286%
Fixed 66.667% 30.769% 42.105%
False error 26.668% 7.692% 11.899%

Table 7.5: Function tagging results, adjusted for treebank error

7.6.9 Experimental results

We compiled all the noted treebank errors and their corrections. The most common correction
involved simply adding, removing, or changing a function tag to what the algorithm output (with
a net e�ect of improving our score). However, it should be noted that when classifying reported
errors, we examined their contexts, and in so doing discovered other sorts of treebank error. Mistags
and misparses did not directly a�ect us; some function tag corrections actually decreased our score.
All corrections were applied anyway, in the hope of cleaner evaluations for future researchers. In
total, we made 235 corrections, including about 130 simple retags.

Finally, we re-evaluated the algorithm's output on the corrected development corpus. Table 7.5
shows the resulting improvements. Precision, recall, and F-measure are calculated as in (Blaheta
and Charniak, 2000). The false error rate is simply the percent by which the error is reduced; in
terms of the performance on the treebank version (t) and the �xed version (f),

False error =
f − t

1.0− t
× 100%

This is the percentage of the reported errors that are due to treebank error.
The main point to be made here is that the false error rates are much higher for precision than

for recall, indicating that the main source of treebank error (at least in the realm of function tagging)
is due to human annotators forgetting a tag.
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7.6.10 Further notes on error correction
In this section, we have given a new characterisation of the sorts of noise one �nds in empirical NLP,
and a roadmap for dealing with it in the future. For many of the problems in the �eld, the state of
the art is now su�ciently advanced that evaluation error is becoming a signi�cant factor in reported
results; we show that it is correctable within the constraints of practicality and ethics.

Although our examples all came from the Penn treebank, the taxonomy presented is applicable
to any corpus annotation project. As long as there are typographical errors, there will be Type B
errors; and unclear or counterintuitive guidelines will forever engender Type A and Type C errors.
Furthermore, we expect that the experimental improvement shown in Section 7.6.9 will be re�ected
in projects on other annotated corpora�perhaps to a lesser or greater degree, depending on the
di�culty of the annotation task and the prior performance of the computer system.

An e�ect of the continuing improvement of the state of the art is that researchers will begin
(or have begun) concentrating on speci�c subproblems, and will naturally report results on those
subproblems. These subproblems are likely to involve the complicated cases, which are presumably
also more subject to annotator error, and are certain to involve smaller test sets, thus increasing
the performance e�ect of each individual misannotation. As the sizes of the subproblems decrease
and their complexity increases, the ability to correct the evaluation corpus will become increasingly
important.
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Chapter 8

Conclusion and future work

The task of function tagging is one for which we are only beginning to discover all the applications.
When the annotators of the Penn Treebank added function tags in the early '90s, they were perhaps
the �rst to put this sort of annotation in a signi�cant text corpus, and took on faith that they would
prove useful to someone. Projects like FrameNet, the NEGRA corpus, and the Prague Dependency
Treebank likewise provided the information thinking it would be useful.

We are now beginning to see researchers explore the range of that utility. Michael Collins
tried in 1997 to use them in a limited way to represent the adjunct/complement distinction, to
assist in the parsing process; more recently, Julia Hockenmaier has used them in the same way
to convert the treebank into a Categorial Grammar formalism. But the true applications are still
under development. Just in the few months before the completion of this thesis, researchers from
four di�erent universities have expressed interest in using output from the function tagger as input
to their own systems, in question answering, information retrieval, and various forms of machine
translation. Experiments are still under way, but all were very optimistic that this tool would prove
helpful at making their own systems more accurate.

8.1 Contributions

The text of this thesis includes, in addition to my own work, a great deal of background and
explanations of systems developed by others. Here, then, is a brief summary of the work that is
speci�cally my own.
Penn function tagger. This is the �rst system to speci�cally work with the function tags used in

the Penn treebank, and the �rst to add function tags to text parsed using the Penn treebank
parse structure, phrase labels, and part-of-speech tags. For systems already making use of other
Penn-style data markup, it is important to be able to use function tags that are compatible.

More accurate syntactic tags. I am not the �rst to apply syntactic function tags to text, but
my system for doing so seems to be considerably more accurate than the existing systems.
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Semantic tags. I know of no other existing systems that perform a function tag annotation com-
parable to my semantic category.

System comparison. I performed a comparison of several systems on the function tagging task,
evaluating the relative advantages of each in various situations.

New features and feature comparison. I devised a few new features (most importantly the alt
head) that have not been used in statistical systems before, and analysed which features were
most helpful in calculating function tags of various categories.

Voted perceptron modi�cations. I created two modi�cations to the voted perceptron�sampling
the weights vectors, and ignoring weights from the �rst few epochs�that made the technique
feasible and improved its performance, respectively.

8.2 Future work

One major area of experimentation that I would still like to try is extending this work to other
corpora. The NEGRA corpus in particular has available a view of the annotation similar to that
used by the Penn treebank, so much of the existing code should be reusable with some slight
adaptations. The PDT would also be an interesting corpus to run; in both cases, I suspect that
performance would be relatively similar to that seen on the Penn treebank, although NEGRA's
tagset is largely restricted to the syntactic domain.

As discussed in Section 7.3.3, the `grammatical relations' metric has not really been successfully
applied to the combination of the Charniak parser and my function tagger. I would like to try this,
as I suspect that my system would compare favourably to the other systems presented in Preiss'
paper.

Seeing how this work improves other applications remains an important testing ground. As
mentioned earlier, other researchers have already requested copies of the system to make use of the
function tag information in natural language applications including language modelling, question
answering, and machine translation. I eagerly await their results and am interested in doing some
work myself in some of these areas. I am con�dent that my work in function tagging will continue
to be a valuable and productive contribution to the �eld.



Appendix A

Function tag descriptions

For a more complete description of each function tag, with more comprehensive examples, see Sec-
tion 2.2 of (Bies et al., 1995).

A.1 Syntactic tags

These six tags serve primarily to mark the syntactic role a given constituent plays in a sentence. Verb
phrases are assumed to be predicates, and are therefore unmarked. Noun phrases at the sentence or
verb phrase level that have neither grammatical nor form/function tags are objects (either direct or
indirect, but see A.1.1).

These tags correspond to those presented in Section 2.2.2 `Grammatical role' in (Bies et al.,
1995), except that that section also includes topicalisation, which we have separated into a separated
category (see A.3).

A.1.1 DTV�Dative
This tag marks indirect objects in their prepositional form. For this tag to occur, the verb needs
to allow the indirect object to appear either before the direct object (`shifted') or in a `to'-phrase
after the direct object (`unshifted'); and the unshifted form must be the one used. (Shifted datives
are unmarked.) In the sentence �Alex gave Sasha a book�, `Sasha' is the indirect object but does not
get a DTV tag; however, in the shifted version �Alex gave a book to Sasha� , the phrase �to Sasha� is
marked DTV.

If the preposition used is `for', and the object appears in either shifted or unshifted form, the
BNF tag is used (see A.2.2).

A.1.2 LGS�Logical subject
If a sentence is passive, then the subject of the sentence is what would be the object in an active
version of the sentence. The subject of the active version, if it's present at all, is tucked inside a
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`by'-phrase under the verb. This �logical� subject is then marked LGS. In the sentence �Alex was hit
by Sasha� , `Sasha' would be marked LGS.

It is important to note that the tagging guidelines speci�cally state that the LGS tag attaches to
the NP object of `by', and not to the PP itself; it is also important to note that the human annotators
screwed this up with some regularity (see Section A.1.2).

A.1.3 PRD�Predicative
Any predicative construction that is not a VP is marked with this tag. For instance (and most
commonly), this includes noun and adjective phrase objects of `be'. In most cases where the PRD-
marked phrase is not itself an object of a stative verb like `be', it heads a VP-less S node, as in �Alex
kept the party a secret�, where �the party� is the subject and �a secret� the predicate of the S node
object of the VP headed by `kept'.

A.1.4 PUT�Locative complement of `put'
This (relatively rare) tag marks the locative complement of `put'. Since `put' in its most basic
meaning requires more than just a direct object (cf �∗Sasha put the book.�), but the required location
is not a direct/indirect object, it needs to be marked. Thus in �Sasha put the book on the web�, �on
the web� is marked PUT.

Note, however, that other verbs that behave similarly (e.g. `set': �∗Sasha set the book�) do not
get this tag.

A.1.5 SBJ�Subject
The subject of every S node gets this tag. As nearly every �sentence� in the treebank contains one
S (or SINV, etc) at the top and often a few nested, this is by far the most common function tag in
the treebank.

A.1.6 VOC�Vocative
This tag is marked on phrases of address; in �Sasha, read the book� , `Sasha' would be marked VOC.
Since news articles rarely address the reader directly, the Penn treebank contains very few instances
of this tag (mostly in quotations).

A.2 Semantic tags

This category includes those tags introduced in Sections 2.2.1 and 2.2.3 of the bracketing guidelines.
They tend to mark the semantic role of a constituent, but there are few universal statements that
can be made about their usage. In many cases they act adverbially, but even aside from the NOM
tag they sometimes modify noun phrases or other things. Most mark adjuncts, but some mark
complements.
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A.2.1 ADV�Adverbial
Constituents are marked ADV if they are not adverbial phrases, but are acting adverbially, but aren't
marked with some other form/function tag. For instance, in �Sasha felt slightly sick�, �slightly� is an
adverb comprising an adverbial phrase, and therefore would not be tagged ADV. But in �Sasha felt
a little bit sick�, �a little bit� is a noun phrase acting adverbially, so it is tagged ADV. On the third
hand, in �Sasha grew a little bit�, �a little bit� is still modifying the verb, but it has a more speci�c
tag to use (EXT), so it doesn't get an ADV tag.

A.2.2 BNF�Benefactive
This tag marks an indirect object, in either shifted or unshifted form (see A.1.1), that uses or would
use the preposition `for'. That is, in the sentences �Alex made Sasha a pie� and �Alex made a pie for
Sasha� , �Sasha� and �for Sasha� (respectively) would carry the BNF tag.

A.2.3 DIR�Direction
Constituents�usually prepositional phrases�that answer the questions �from where?� and �to where?�
are marked with the DIR tag. (Those that answer the question �through where?� are marked LOC
instead.)

As with many other tags, this includes metaphorical location, especially �nancial, as in �The
price rose to $37�, wherein �to $37� would be marked DIR.

A.2.4 EXT�Extent
This marks the (usually �nancial `pseudo-spatial') extent of an activity, as in �The price rose $4�,
where �$4� would be marked EXT.

Unlike most of the other tags in this category, EXT is rarely attached to a prepositional phrase,
more usually marking noun phrases.

A.2.5 LOC�Locative
This very common tag is used to mark phrases that denote the place where something takes place,
usually as a VP modi�er but also sometimes found on an NP modi�er.

The location may be metaphorical, as in �panic in the market� or �banking at that company� .
However, idiomatic location, as in �under pressure�, is not marked LOC.

If the location is a source or a destination, DIR may be more appropriate.

A.2.6 MNR�Manner
This tag is used for phrases that indicate the manner in which some action was performed, or the
instrument with which it was performed.
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Some annotators liberally mark nearly every otherwise-unmarked ADVP as MNR, while others
only mark phrases that actually indicate manner (see Section 7.6.3).

A.2.7 NOM�Nominative

When headless relative clauses and gerunds are used nominally, they are marked NOM. (For instance,
in �Baking pies is fun�, �baking pies� is NOM.) Other non-NPs are not so tagged.

A.2.8 PRP�Purpose

This tag marks constituents that annotate the purpose of or reason for an action. In the sentence
�Sasha ran for health reasons� , �for health reasons� would be marked PRP.

A.2.9 TMP�Temporal

This is the most common tag in this category, and the second most common overall; it marks
temporal constituents, those which answer the questions �when?�, �how often?�, and �how long?�.
Temporal phrases can be either noun phrases or prepositional phrases, but in a choice between
marking a PP or its NP object, annotators are advised to mark the PP.1

A.3 Topicalisation (TPC)

This tag marks elements that precede the subject in a declarative sentence. Topicalised elements
must meet other criteria, which are given in the bracketing guidelines.

The reason this tag was separated from the other syntactic tags is that it can co-occur with
several of them. Since the categories are comprised of otherwise mutually exclusive tags, it seemed
a good idea to remove this one.

A.4 Miscellaneous

These tags don't �t into the other categories.

A.4.1 CLF�`It'-Cleft

Marks cleft constructions. In the sentence �It was Sasha that read the book�, the top-level S node
would be marked CLF.

1Except if the PP is already marked DIR and the sense of the expression is �nancial.
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A.4.2 CLR��Closely related�
The CLR tag was meant to mark a variety of phenomena, most of which could be loosely grouped
as collocation and idiom. The largest subgroup of CLR markings are phrasal verbs like `rely on'. It
turns out that this tag was ill-de�ned and never meant for public consumption; see Section 2.1.1.

A.4.3 HLN�Headline
Headlines (and datelines) are marked with HLN; such constituents always occur at the top level,
distinct from the following sentence.

A.4.4 TTL�Title
This tag marks the titles of books, paintings, shows, and so on. Titles may be of any constituent
type, and may be altogether ungrammatical�the rare labels NAC, NX, and X (all of which indicate
unusual and di�cult-to-bracket grammatical constructions) each occur at least once in the Penn
treebank with TTL.
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Appendix B

tsed

B.1 The command-line

tgrep [options] spattern file(s)...

Prints to standard output those sentences in file(s) that match spattern . spattern is
a search pattern constructed as described in Section B.2. Note that for most nontrivial search
patterns you will need to put single quotes around the search pattern so that your shell does not
interpret it as multiple arguments. Note also that in some shells (e.g. tcsh), some characters (e.g. !)
will be grabbed by the shell even when single-quoted; this can be worked around with the alternate
operators discussed in Section B.2.3.

tsed [options] spattern rpattern file(s)...

Prints to standard output the entirety of file(s) , with every sentence that matches spattern
modi�ed according to rpattern . spattern is a search pattern as for tgrep, described in Section B.2.
rpattern is a replacement pattern, detailed in Section B.3.

tsed [options] -b[patfile ] file(s)...

Instead of providing a single search-and-replace pattern on the command line, you can provide
any number of them in a �le (patfile , if present) or on standard input. Each line of the batch �le
contains one spattern (Section B.2) and one rpattern (Section B.3), each enclosed in curly brackets.1
tsed will iterate through the patterns on a per-sentence basis, reading the sentence only once and
printing it out when done.

wsjsed [options] file(s)...

When making a moderate number of changes to a corpus, or when making changes you'll want
to communicate to someone else, you should wrap tsed with some program that understands the
�le structure of that corpus. For the Penn treebank, we have written wsjsed; it is described in
Section B.4. Scripts to wsjsed can be provided as �lenames on the command line or directly to

1The format is slightly more forgiving than that: any amount of whitespace can precede, follow, or separate the
bracketed patterns, and the whole thing may be followed by a `#'-delimited comment. It must all �t on one line,
however.
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standard input.

B.1.1 General options
Note that (for now) all options to tgrep and tsed need to be passed separately��tsed -C -g ...�
rather than �tsed -Cg ...��for (not very good) historical reasons. This will be �xed in a future
release.
-Ddir The directory where internal data �les reside. These include e.g. headInfo.txt, which is

used to implement the head-�nding / operator.
-Idir If present, this argument will be prepended to each input �le provided.
-dN If N is greater than zero, provides arcane debugging output.
-C Causes matching of leaf nodes (i.e. words) to be case-insensitive.
-h Provides a list of command-line options.

B.1.2 tgrep options
-f Prints �le and sentence number information for every match.
-s Instead of printing each match by itself, prints the entire sentence containing (at least) one

match.

B.1.3 tsed options
-g Replace all occurrences of a pattern. In batch mode, this option applies on a per-pattern basis;

that is, the �rst spattern is matched and all occurrences are modi�ed according to the rpattern
before considering the second pattern.

-G Perform replacement, then repeat search-and-replace. This di�ers from the -g option in that for
-g all the matches are found before any of the replacements are performed, and it is therefore
guaranteed to terminate. The -G option, on the other hand, will re-match the spattern after
the rpattern is applied, until no change results. Especially when used together with the -b
option, it is very possible to cause in�nite loops! The -G and -g can be used together, although
in most (not all) cases the -g will be redundant.2

-i Perform change in place rather than outputting to standard output. Most corpus modi�cation
(e.g. wsjsed) will use this option.

2The application of the rpattern on an early match could cause a later spattern match to fail; if the -g option is
used, all the spattern matches will be found already, and the rpattern applications won't a�ect them. If both -g and
-G are used, all the spattern matches will be found, and the rpatterns will be applied; and then the whole thing will
be repeated to see if any new spattern matches were formed.
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-c Only print those sentences where at least one change was made. If a pattern �res but the
modi�cation is null (e.g. removing a tag that isn't there), the sentence won't be printed.

B.1.4 wsjsed options

-wpath Tells wsjsed where to �nd the copy of the Penn treebank to be modi�ed. Default is the
relative path `wsj/'.

B.2 Search patterns

The search pattern syntax is based heavily on that used in Richard Pina's tgrep that comes packaged
with the Penn treebank. There are some major di�erences, however, which will be noted below.

The basic structure of a search pattern is as follows:
base [op arg ]*

The base of the pattern is a label or word to be searched for; a pattern with nothing but a base
label will print every single tree that is rooted at a node with that label. To have a base match
anything, use the underscore (`_') wildcard.

After the base you can have any number of restrictions, each of which are composed of an
operator and an argument. The operators must be separated from the preceding pattern and from
the succeeding argument by whitespace; this is because virtually any punctuation can actually occur
in a word, and thus whitespace is our only consistent delimiter. (Also parentheses. More on that in a
minute.) Some operators take atomic things, like numbers and labels, as their arguments; others can
take patterns. Unless they are comprised solely of a base pattern, however, they must be enclosed
by parentheses or square brackets, as the next unparenthesised operator will be taken as beginning
a new restriction. For instance,

VP < NP < PP

searches for a VP that has at least one NP child and at least one PP child; on the other hand
VP < (NP < PP)

searches for a VP that has at least one NP child which itself has at least one PP child. Patterns
can be nested inde�nitely, and some pretty complex ones can arise; examples of this can be seen in
Section B.2.4. The di�erence between parentheses and square brackets is irrelevant for tgrep; the
use of square brackets in tsed spatterns is discussed in Section B.3.1.

It should be noted that search patterns are considered from left to right; for every constituent,
it is �rst compared against the base pattern, then against each restriction in turn. If at any point
a comparison fails, the remainder are not considered. It is therefore prudent to put any compute-
intensive restrictions at the end of the pattern.
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B.2.1 Search pattern operators
Here we detail the behaviour of each operator, and say what kind of argument it can take.

Sentence number: #
This operator accepts a numeric argument n, and automatically fails unless the constituent under
consideration is in sentence n of the current input �le (numbered from 0). Thus

S # 4

would �nd all S nodes in sentence 4 (the 5th sentence) of any of the input �les. This will normally
only be run on individual �les, and is probably only useful in error-correction tsed patterns.

Function tag: -
This operator accepts a tag x, and succeeds if x is among the hyphen-separated tags modifying the
constituent under consideration.

PP - TMP

�nds all PP nodes tagged with the TMP function tag.

Head: /
This operator accepts a word w, and succeeds if w is the head word of the constituent under
consideration. NB: the algorithm used to determine head words is speci�c to the Penn treebank
tagset, and will work unpredictably or not at all with other tagsets!

NP / stock

�nds the noun phrase(s) headed by the word stock.
Note that all heads are calculated when trees are read in, so that this restriction can be checked

in constant time. Unfortunately, this imposes a penalty on spatterns that don't require it, so it may
change in future versions (so that heads are only calculated if they will be used, for instance).

Ancestor: �
This operator accepts a pattern p, and succeeds if any node on the path from the current constituent
to the root node, including the root node but not the current constituent, is matched by the pattern
p.

PP � S

�nds any prepositional phrase (PP) anywhere below an S node.
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Parent: >
This operator accepts a pattern p, and succeeds if the parent of the node under current consideration
is matched by p.

_ > PRN

�nds all children of parentheticals (PRN).

Child: <
This operator accepts a pattern p, and succeeds if any child of the node under current consideration
is matched by p.

PP < DT

�nds all prepositional phrases that contain determiners at their top level.

Speci�c child: <N
This operator accepts a pattern p, and succeeds if the Nth child of the node under current consid-
eration is matched by p. An N of 1 means the leftmost child. If N is negative, count proceeds from
the right, so that an N of −1 means the rightmost child. The operators <, and <` are synonyms
for <1 and <-1, respectively.

S <` NP

�nds an S-node whose last child is a noun phrase.

Descendant: �
This operator accepts a pattern p, and succeds if a node matching p can be found anywhere in the
subtree rooted at the node under current consideration.

S � PP

�nds an S-node that has any PP descendants.

Left descendant: �,
This operator accepts a pattern p, and succeeds if any left descendant of the node under current
consideration matches p. A left descendant is any descendant that can be reached only by going
through the leftmost children of each node in turn.

S �, Each

�nds any S-node whose �rst word is `Each'.
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Right descendant: �`
This operator accepts a pattern p, and succeeds if any right descendant of the node under current
consideration matches p. A right descendant is any descendant that can be reached only by going
through the rightmost children of each node in turn.

S �` ?

�nds any S-node that ends with a question mark.

Sibling: $
This operator accepts a pattern p, and succeeds if any sibling of the node under current consideration
matches p. Note that the siblings can occur in either order.

NP $ PRN

�nds a noun phrase that is sibling to a parenthetical.

Right-adjacent sibling: $.
This operator accepts a pattern p, and succeeds if the sibling following the node under current
consideration matches p. This operator is sensitive to order.

NP $. ,

�nds a noun phrase that is followed by (not preceded by!) a comma-like punctuation mark. (That
is, anything whose part-of-speech tag is a comma.)

Precedent sibling: $..
This operator accepts a pattern p, and succeeds if any sibling that precedes the node under current
consideration matches p. The precedent sibling need not be adjacent.

PP $.. VP

�nds a prepositional phrase preceded by a sibling VP.

B.2.2 Search pattern negation: !
Any operator can be negated by preceding it with an exclamation point. Under the hood, this is
implemented as simply running the restriction as if it were not negated, then reversing the sense of
the result.

IN !> PP

�nds prepositions not directly under a prepositional phrase.
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B.2.3 Alternate operator characters
Many patterns will be entered on the command line, but shells often do not play well with operator
characters (notably ` !'). As a result, there are some substitutions that can be made:

N !
S $
P <
C >

Table B.1: Operation substitution characters

These can be made on a character-by-character basis; for instance, legitimate substitutes for !�
include N�, NPP, and even NP<.

B.2.4 Search pattern examples
Here we list a few di�erent sample search patterns, with a prose description of each.

Mislabelled logical subjects

NP > (PP - LGS)

This pattern �nds all noun phrases whose parents are prepositional phrases marked as logical sub-
jects. Note that since the base pattern is the NP, it is that node that will be printed out (not the
parent PP). To print the PP instead, we would write the spattern as

PP - LGS < NP

or
PP < NP - LGS

which are semantically equivalent. The �rst will be somewhat faster, however, as restrictions are
processed in order: the tag restriction string-compares �LGS� against every tag on that PP. If there
are no tags, it fails immediately; in any case it's unlikely to have more than one tag to compare
against. On the other hand, the child restriction needs to iterate through all children (always
at least one, generally two or more) and string-compare �NP� against all the labels. This cost is
more pronounced for constituent types that tend to have many children, and it's much much more
pronounced for the descendant restriction (�), which has to check the entire subtree.

`from. . . ago' phrases

PP / from �` ago
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This pattern �nds all prepositional phrases headed by `from' and ending with `ago'. The head test
is cheap (see Section B.2.1), and the right-descendant test is not terribly expensive�linear in the
depth of the subtree, rather than in the total size of the subtree. This won't get as many results as

PP / from � ago

but if you only care about phrases that end with `ago', the former will be substantially more e�cient.

B.3 Replacement patterns

Once the pattern is matched, we need to know what to replace it with. The di�erent types of
replacement patterns tend to change a minimum of things about the matched pattern�no single
rpattern can change both the label and the function tag of a node, for instance. As a result, a number
of fairly simple changes will require multiple spattern-rpattern pairs to be applied in sequence. At
some point there may be a mechanism for applying multiple rpatterns to a single spattern, but as
there is already a batch capability in tsed, this is a relatively low priority.

B.3.1 Referring to the matched spattern

There are several places in an rpattern where you might need to refer to something in the corre-
sponding spattern. This is done by using square brackets [] instead of parentheses () in the spattern.
The subpattern is referred to by a backslash followed by a number; the number corresponds to the
sequential number of the square-bracketed subpattern. Such subpatterns are counted from 1, and
in order by their left (open) bracket. Thus in a pattern like

A < [B < [C]] < [D]

we have \1 referring to the B node, \2 to the C node, and \3 to the D node. The zeroth match, \0,
refers to the entire spattern match (here the A node).

B.3.2 The rpattern types

Removing nodes: ()

To remove a matched node from the tree it is in, the rpattern is simply an empty pair of parentheses.

Relabelling nodes: LABEL

To change the label of the matched node, the rpattern is just the label to replace it with. Using this
type of rpattern will not change the children of a given node, or any of the tags associated with it.
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Retagging nodes: - TAG , ! TAG

To add a tag to a node, use a hyphen, a space (that's important), and the tag to be added. To
remove a tag, replace the hyphen with an exclamation point. Because it's possible to have multiple
tags on a node, actually changing the tag is done by removing the old one and adding the new
one�merely adding the new tag will preserve the old one intact. If a tag is to be added but is
already present, no error is generated, but the program considers that no change is made (which
may generate a warning down the line). Likewise, if a tag is to be removed but is not present, tsed
considers that no change is made.

Renumbering nodes: - n , ! n

To add or change the coreference index of a node, use a hyphen, a space, and the new coreference
index. To remove the index, replace the hyphen with an exclamation point. It is not possible to
have multiple coref indices for a single node, so adding a number to an already-indexed node will
change the number. If an index is to be added and that n is already the index of the node, the
program considers that no change is made. If an index is to be removed and no index is present, or
the index is di�erent from n, no change is made.

New subtrees: (LABEL ...)
If the matched node is to be replaced with all-new subtrees that were not present in the original
tree, the usual treebank S-expression format is used: an open paren, the label of the node, all the
children of the new node, and a close paren. The children can themselves be �new� subtrees like this
one, or �reference� or �reuse� subtrees (see below).

Referencing subtrees: \n
To include a submatch in its entirety with no alteration, just refer to it as described in Section B.3.1.

Reusing subtrees: (\n ...)
If there is a submatch of the spattern that contains a node of which you wish to change the children,
you can reuse that node using this type of rpattern. It is just like a �new� subtree, except that the
label is replaced with a reference to the node in the original tree; this causes not only the label but
also the coref index and all function tags to carry over to the new tree. The children, however, are
replaced with those provided in the rpattern. Said children can themselves be �new�, �reference�, or
�reuse� subtrees.

B.3.3 Replacing subpatterns
It sometimes happens to be easier to write an spattern where the base pattern is fairly high in the
tree, but the node we wish to replace is further down, and therefore only a submatch of the spattern.
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To handle these cases, it is possible to specify which subpattern is being modi�ed by the rpattern.
To do so, simply precede the rpattern with a number (no backslash!) and a space. If this is not
done, zero is assumed, which corresponds to the node matched by the entire spattern.

B.3.4 Some notes on the inner workings

In many respects, tsed acts very much like a combination of the tgrep tree-search utility and the
sed text-replace (and more) utility. However, there is one important di�erence: when it handles
references, it is actually handling them by reference. This is almost always what you would want,
but may cause confusion in some cases. One consequent is that portions of trees cannot be copied�
references can be used at most once each in the rpattern. If they are used more, the resulting
behaviour is unde�ned.

Another, most noticeable when replacing subpatterns (cf Section B.3.3), is that nodes are removed
before being reinserted. Thus, with an spattern like

A < [B] < [C < [D]]

(which would match a tree like (A B (C D E))), the rpattern
2 (\2 \1 \3)

would yield an output tree (A (C B D)). Note that although the initial 2 indicates that only the
second subpattern (here labelled C) will be replaced, the �rst subpattern (B) is �rst removed from
its place in the tree before being added back in as a child of C. (Also note that, due to the way the
query was constructed, the E node just went away. That's a problem, we're working on it.)

B.3.5 Example rpatterns

Retagging

- LOC

This pattern keeps the structure of the input tree exactly the same, except that the matched node
is tagged LOC. If the spattern had matched (PP ...) the result would be (PP-LOC ...).

Relabelling

RB

This pattern will change the label of the matched tree to RB. If the spattern matched (IN down),
the output would be (RB down).
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Adding structure

1 (S \1 \2)

This rpattern assumes there were (at least) two square-bracketted submatches in the a�liated spat-
tern; it pulls them out of their respective places in the tree and puts them under a newly-created S
node, which in turn is placed where the �rst of the submatches originally was. Thus if the spattern
had been

A < [B] < [C]

which had matched (A (B ...) (C ...) ...), the output tree would be (A (S (B ...) (C ...)) ...).

B.4 Modifying the Penn treebank

The purpose for which tsed was written, and for which we envision it being used most often, was to
provide a concise format with which to transmit modi�cations to large corpora�in particular, the
Penn treebank. By itself, tsed can perform the modi�cations, but we need something a little more
high-level to make modi�cation scripts, and to handle the task of working speci�cally with treebank
�les. That program is wsjsed.

A script for wsjsed has, aside from blank lines and comments (lines whose �rst non-whitespace
character is `#'), some number of wsjsed commands. Each of these is a directive to make a change to
one sentence, one section, or the entirety of the Penn treebank, using calls to tsed. A command to
wsjsed consists of three parts�the last two are the spattern and the rpattern, as described above.

The �rst part of the wsjsed command indicates which �le(s) are to be modi�ed, which sentences
within those �les, and any parameters to be passed to tsed, such as -C for case insensitivity. The
exact format is

<section><file>#<sentence>[-<options>]

If there are no command line options, that portion can be omitted. To apply a change to all sentences
in a given section, use the form

<section>*[-<options>]

To apply a change to the entire treebank, use
*[-<options>]

Note that the section and �le number should always be two digits, even when less than 10 (pad
with an extra zero if necessary). The sentence number can be any length.
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B.4.1 Comments
Outside of a pattern, the hash character (`#') marks the start of a comment; everything else on that
line will be ignored. In the usual case, this means that a line that starts with `#' will be treated as
blank, and ignored.

B.4.2 One-line commands
A one-line command has, predictably, all three parts on one line, each enclosed by curly brackets.
The parts may be separated by whitespace. For instance, the line

{2421#5-C} {NP / stock} {VP}

in a wsjsed script would modify sentence 5 in �le 21 of section 24 by making the NP headed by the
word `stock' (or `Stock', or `STOCK') into a VP.

B.4.3 Batch commands
If multiple modi�cations are to be made to the same �le, it is more e�cient to put them into the
same wsjsed command, using the batch syntax. To invoke the batch syntax, you need to provide the
-b option. If this option is given, there should be an open curly bracket (`{') on the line, and nothing
else (aside from whitespace). Subsequent lines are treated as part of the batch, and will be given
verbatim to tsed (see Section B.1); the batch is terminated by a line whose only non-whitespace
character is a close curly bracket (}).3

{2415#19-b} {
{IN < in} {RP}
{ADVP / in} {! DIR}
{ADVP / in} {PRT}

}

will modify sentence 19 of �le 15 of section 24 of the treebank, by retagging the word `in' as a
particle, removing the DIR tag from the phrase headed by it, and relabel that phrase as a particle
phrase.

B.5 Installation

This is the section that needs the most work, because right now it is extremely ad hoc. There are
many things that are ugly, requiring command-line con�guration, that I'd eventually like to wrap
into a relatively automatic �make install�-type script. For now, though, this is what there is.

3Yet another thing to be �xed eventually: make this a little less fragile with regards to what needs to be on which
line.
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B.5.1 Executables
If you have one of the systems that I claim to be `supported', you don't need to download the
source. There are three executables: tgrep, tsed, and wsjsed. For the moment, in order for them
to work, you need to also grab the data directory containing �les like �headInfo.txt�. This, again,
is something that will be �xed up in future releases, but for now you need to get this directory
and put it somewhere. Whenever you run any of the executables, you will need to provide that
directory's location with the -D option. Thus

wsjsed -D/home/myname/tseddata/ scriptfile

is what you would need to invoke, assuming that's where you put the data directory.
You may need to edit the �rst line of wsjsed if your system's perl executable is someplace other

than /usr/local/bin.
The other (minor) issue is, of course, where to put the executables themselves. It shouldn't

matter, although you'll probably want to make sure they are in your PATH somewhere.

B.5.2 Source
Here's where things get really hairy. I haven't been able to test this con�guration on too many
systems, so if you have problems, email me and we'll together work out what needs to be done.

You will need an ANSI-compliant C++ compiler (GNU's g++ works admirably), and you will
need flex++ and bison++. The former comes installed on many systems, but you'll probably need
to download the latter from the web�the sunsite mirrors have it. Finally, you will need to have
gmake installed, although the primary make program (i.e. the one called when you simply type make)
might be something else.

First, download and open the tarball. It will untar into a directory named tsed. That directory
has a number of subdirectories; data is the directory mentioned above, that you'll need to provide
tsed and the others with its path. src contains the source, obviously.

With any luck, you shouldn't need to play with anything in the subdirectories. The make�les
are set up in a pretty modular way, so that hopefully you will only need to create or modify the
system-speci�c one. First, check what your ARCH environment variable is set to.4 Edit the Make�le
whose extension matches your ARCH: i686 for linux, etc. Probably the only thing you'll need to do
is modify the locations of the various programs (g++ et al).

Then, type `make all'. If it succeeds, tgrep and tsed will now be in the directory $ARCH/O (i.e.
ppc/O, etc). wsjsed is in the main directory. Copy these three executables into some directory in
your PATH.

If any of this doesn't work, email me�dpb@cs.brown.edu�and hopefully we can �gure it out.
4Check by typing `echo $ARCH' into a shell. If it's not de�ned, you'll probably want to set it. The ones we have
prede�ned are 'sun4' (for Sun/Solaris), 'i686' (for Linux), and 'ppc' (for Mac OS X). Yes, we know that this
should be an OS variable. No, we're not going to �x it right now.
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Appendix C

Treebank corrections

These corrections are also available on the web at http://www.cs.brown.edu/∼dpb/tbfix/.
Note that the misparse �x of 2428#2 was wrapped to �t the page, and should properly be on a

single line.

#Type A
{24*-bg} {
{NP !- LGS > (PP - LGS)} {- LGS}
{PP - LGS} {! LGS}

}

#Type B
{2400#2}{NP < (NNP < York)}{- LOC}
{2400#2}{IN < about}{RB}
{2400#4}{IN < down}{RB}
{2400#6}{NP < (NNP < Wednesday)}{- TMP}
{2400#6}{ADVP / Meanwhile}{- TMP}
{2400#7}{PP / at << MMS}{- LOC}
{2400#11}{PP / in << imports}{- LOC}
{2400#14}{PP / in << prices}{- LOC}
{2400#14}{PP / in << consumer}{- LOC}
{2400#15}{PP / in << CPI}{- LOC}
{2400#16}{PP / among}{- LOC}
{2400#16}{PP / in << producer}{- LOC}
{2400#18-b} {
{NP < (RB / as $. (_ / much) $.. (IN / as))} {QP}
{NP / %} {- EXT}

}
89
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{2400#20}{PP / in << inflation}{- LOC}
{2400#22}{PP / in << permits}{- LOC}
{2400#22}{PP / in << starts}{- LOC}
{2401#4}{IN < down}{RB}
{2402#2}{JJ < long}{VB}
{2402#7}{PP / in << detail}{- MNR}
{2402#8}{PP / in << room}{- LOC}
{2402#9}{IN < about}{RB}
{2402#14}{NP / morning}{- TMP}
{2402#21}{PP / on << globe}{- LOC}
{2402#23}{ADVP / still}{- TMP}
{2402#32-b} {
{VP / make < [NP / him] < [ADJP / palatable]} {1 (S \1 \2)}
{NP / him} {- SBJ}
{ADJP / palatable} {- PRD}

}
{2402#34}{IN < about}{RB}
{2402#48}{PP / in << diaper}{- LOC}
{2403#2}{PP / to << Axa}{- DTV}
{2403#4}{IN < about}{RB}
{2403#12}{PP / in << states}{- LOC}
{2404#0}{IN < down}{RB}
{2404#1}{ADVP < NP < RBR}{- TMP}
{2404#2}{IN < down}{RB}
{2404#7}{IN < up}{RB}
{2404#12}{IN < down}{RB}
{2404#16}{PP / in << September}{- TMP}
{2404#27}{NP << between}{- EXT}
{2406#8}{SBAR <<, when << broadcasting}{- TMP}
{2406#32}{PP / Through}{- TMP}
{2406#36}{IN < around}{RB}
{2406#42}{NP / Newsreel}{- TTL}
{2407#5}{SBAR <<, because}{- PRP}
{2407#9}{PP / in << 1970s}{- TMP}
{2407#26}{NN < House}{NNP}
{2407#31}{ADVP / ever}{- TMP}
{2407#47}{PP / at}{- LOC}
{2409#0-g}{IN < about}{RB}
{2410#0}{PP / to << %}{- DIR}
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{2410#2}{NP / quarter}{- TMP}
{2410#3}{IN < down}{RB}
{2411#3}{IN < about}{RB}
{2412#3-b} {
{NP < [_ < Sen.] < [_ < Sam] < [_ < Nunn] < PRN} {1 (NP \1 \2 \3)}
{NP / Ga} {- LOC}
{NP / Okla.} {- LOC}

}
{2412#9}{PP / to << society}{- DTV}
{2412#33}{PP / about}{! LOC}
{2412#35}{PP / in << abstract}{! LOC}
{2412#50}{PP / in << U.S.}{- LOC}
{2412#69}{NP / behaviors}{- LGS}
{2412#69}{IN < down}{RP}
{2412#79}{SBAR <<, what}{- NOM}
{2413#9}{S / necessary}{FRAG}
{2413#21}{ADVP / ago}{- TMP}
{2413#23}{NP <<, Sunday}{- TMP}
{2413#27-b} {
{IN < around} {RP}
{ADVP / around} {! DIR}
{ADVP / around} {PRT}

}
{2413#29}{S / to}{- PRP}
{2413#41}{ADVP / then}{- TMP}
{2415#0-b} {
{IN < down} {RP}
{ADVP / down} {! PUT}
{ADVP / down} {PRT}

}
{2415#3}{PP / after}{- TMP}
{2415#4}{SBAR <<, what}{- NOM}
{2415#10}{NP / recovery}{- LGS}
{2415#17}{IN < about}{RB}
{2415#19-b} {
{IN < in} {RP}
{ADVP / in} {! DIR}
{ADVP / in} {PRT}

}
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{2415#45}{PP / in << account}{- LOC}
{2415#46}{IN < around}{RB}
{2416#7-b} {
{PP / in << ownership} {- LOC}
{NP / ownership} {! LOC}

}
{2417#4}{PP / in << volume}{- LOC}
{2417#15-b} {
{VP / help < [NP / officials] < [VP / resolve]} {1 (S \1 \2)}
{NP / officials} {- SBJ}

}
{2417#17}{SBAR <<, what}{- NOM}
{2417#20}{PP / After}{- TMP}
{2417#20}{IN < about}{RB}
{2417#22-b} {
{IN < around} {RP}
{ADVP / around} {! CLR}
{ADVP / around} {! LOC}
{ADVP / around} {PRT}

}
{2417#33-b} {
{VP / having < [NP / trades] < [VP / flow]} {1 (S \1 \2)}
{NP / trades} {- SBJ}

}
{2417#41}{NP / points}{- EXT}
{2417#45}{IN < about}{RB}
{2417#51}{PP / in << futures}{- LOC}
{2417#56}{NP / proposals < PRN}{- HLN}
{2417#66}{IN < about}{RB}
{2417#70}{IN < about}{RB}
{2417#71}{PP / at}{- LOC}
#{2417#73}{VBD < bribed}{VBN}
{2417#75}{IN < about}{RB}
{2417#84}{IN < about}{RB}
{2417#87}{IN < down}{RB}
{2417#87-b} {
{SBAR < [S < (NP < [DT < that])]} {2 IN}
{SBAR < [S < (NP < [IN < that])]} {(SBAR \2 \1)}

}
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{2417#88}{DT < half}{NN}
{2417#88-b} {
{NP > (PP / in << half)} {! TMP}
{PP / in << half} {- TMP}

}
{2417#91}{IN < about}{RB}
{2418#12-g}{IN < about}{RB}
{2418#25}{ADJP / necessary}{- PRD}
{2418#25}{IN < on}{RB}
{2418#30}{ADVP / initially}{- TMP}
{2418#30}{IN < about}{RB}
{2418#34}{PP / In << papers}{- LOC}
{2418#37}{ADVP / so}{- PRD}
{2418#45}{PP / with << suit}{- MNR}
{2418#49}{PP / in << case}{- LOC}
{2419#2}{NP <<, Exeter << N.H.}{- LOC}
{2419#2}{NP <<, Fitchburg << Mass.}{- LOC}
{2422#0}{NP <<, New << York}{- LOC}
{2422#2}{NP <<, Tampa << Fla.}{- LOC}
{2422#2}{PP / for << year}{- TMP}
{2422#3}{S / is <<` basis}{- TPC}
{2424#3}{ADVP / ever}{- TMP}
{2424#3}{IN < about}{RB}
{2425#0}{IN < about}{RB}
{2426#6}{SBAR <<, which}{- NOM}
{2427#2}{PP / after << voting}{- TMP}
{2428#2}{VP < [VB < mark] < (S < [_ / down] < [NP / quotations])

< [SBAR <<, while]}{(VP \1 \2 \3 \4)}
{2428#2-b} {
{IN < down} {RP}
{ADJP / down} {! PRD}
{ADJP / down} {PRT}

}
{2428#4-b} {
{S} {! TPC}
{S} {! 1}
{S < [NP / calamity] < [VP / is] < .} {1 (S \1 \2)}
{S <<` over} {- TPC}
{S <<` over} {- 1}
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}
{2428#8}{NP < (CD < 2002)}{- TMP}
{2428#21}{IN < about}{RB}
{2428#23}{IN < about}{RB}
{2428#23-b} {
{PP / to << 7.16} {! EXT}
{PP / to << 7.16} {- DIR}

}
{2428#25}{SBAR <<, When}{- TMP}
{2428#46-b} {
{(NP - ADV < (_ < iota))} {- EXT}
{(NP - ADV < (_ < iota))} {! ADV}

}
{2428#49}{NP <<, Olympia}{- LGS}
{2428#51}{PP / before << Campeau}{- TMP}
{2428#52}{IN < down}{RB}
{2428#53}{NP / months}{- TMP}
{2428#54}{IN < about}{RB}
{2428#62-b} {
{NP < [SBAR]} {\1}
{SBAR <<, What} {- NOM}
{SBAR <<, What} {- SBJ}

}
{2428#64-b} {
{NP < [SBAR]} {\1}
{SBAR <<, What} {- NOM}
{SBAR <<, What} {- SBJ}

}
{2428#67}{NP / Thursday}{- TMP}
{2428#68}{PP / since << March}{- TMP}
{2428#75}{NP <<, about <<` %}{! EXT}
{2428#75}{IN < about}{RB}
{2428#76}{IN < about}{RB}
{2428#76}{IN < up}{RB}
{2428#81-b} {
{NP < (NP < [RB < as] < [RB < much]) < (PP < [IN < as] < (NP < [CD] < [NN]))}
{(\0 (QP \1 \2 \3 \4) \5)}

{NP < QP} {- EXT}
}
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{2429#0-b} {
{VP / keep < [NP] < [ADJP]} {1 (S \1 \2)}
{NP <<, markets} {- SBJ}

}
{2429#1}{IN < about}{RB}
{2429#2}{ADVP / immediately}{! TMP}
{2429#4}{ADVP / shortly}{! TMP}
{2429#23}{PP / under <<` pressure}{! LOC}
{2429#24}{PP / in <<` 1987}{- TMP}
{2431#0}{NP <<, this / year}{- TMP}
{2431#17}{ADVP / regularly}{- TMP}
{2431#26}{NP << coalition / birth}{- LGS}
{2431#29}{PP / in << shuffle}{- LOC}
{2431#29-b} {
{PP / for << Greece} {! PRD}
{ADJP < (JJ < Crucial)} {- PRD}
{ADJP < (ADJP / Crucial)} {- ADV}
{VP < [_ < are] < [PP / for]} {(\0 \1 (ADJP (-NONE- *?*)) \2)}
{ADJP < -NONE-} {- PRD}

}
{2432#0}{PP <<, following}{- TMP}
{2432#6-b} {
{IN < around} {RP}
{ADVP / around} {! DIR}
{ADVP / around} {PRT}

}
{2432#16}{IN < down}{RB}
{2432#16}{VBD < dragged}{VBN}
{2433#17}{PP / to << defunct}{- DTV}
{2433#23}{IN < about}{RB}
{2433#24}{IN < about}{RB}
{2433#36}{NP < [_ < about] < [_ < eight] < (_ < months)}{1 (QP \1 \2)}
{2433#36}{IN < about}{RB}
{2435#7}{IN < around}{RB}
{2436#5}{NP / today}{- TMP}
{2437#2}{IN < about}{RB}
{2438#0-g}{IN < about}{RB}
{2438#1-g}{IN < about}{RB}
{2438#3}{IN < about}{RB}
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{2438#4}{PP / in << face}{! TMP}
{2438#6-g}{IN < about}{RB}
{2438#7-g}{IN < about}{RB}
{2438#8}{IN < about}{RB}
{2438#10-g}{IN < about}{RB}
{2438#11}{IN < about}{RB}
{2438#14-g}{IN < about}{RB}
{2440#3-g}{IN < about}{RB}
{2442#4}{NP <<, a / share}{- ADV}
{2442#4}{IN < about}{RB}
{2443#7}{SBAR <<, where}{- NOM}
{2443#28}{IN < about}{RB}
{2443#43-g}{IN}{RB}
{2443#50}{IN < down}{RB}
{2443#55}{PP / on << loans}{! LOC}
{2443#59}{PP / among}{- LOC}
{2444#11}{IN < down}{RB}
{2444#14-b} {
{SBAR <<, Once} {! ADV}
{SBAR <<, Once} {- TMP}

}
{2444#15}{NP << staggering / %}{- EXT}
{2444#20}{PP / in << years}{- TMP}
{2444#21}{IN < down}{RB}
{2444#21-b} {
{PP / from << peak} {! TMP}
{PP / from << peak} {- DIR}

}
{2444#37}{PP / in <<` 1983}{- TMP}
{2444#38}{NP / year <<` available}{- TMP}
{2444#41}{IN < down}{RB}
{2444#41-b} {
{PP / from <<` peaks} {! TMP}
{PP / from <<` peaks} {- DIR}

}
{2444#45}{PP <<, even / in}{- LOC}
{2444#45}{VP < (RB < even)}{ADVP}
{2444#48}{ADVP / ahead}{- TMP}
{2446#6}{PP / with <<` money}{- MNR}
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{2446#15}{NP < [_ < about] < [_ < two] < (_ < weeks)}{1 (QP \1 \2)}
{2446#15}{IN < about}{RB}
{2446#16}{S / defrauding <<` Lincoln}{- NOM}
{2446#34}{SBAR <<, what << investigated}{- NOM}
{2448#1}{IN < about}{RB}
{2448#3}{PP / in << wake}{- LOC}
{2448#16-b} {
{SBAR / while <<` billion} {! TMP}
{SBAR / while <<` billion} {- ADV}

}
{2448#30}{IN < about}{RB}
{2448#35}{IN < down}{RB}
{2448#40}{PP / in <<` Guangdong}{- LOC}
{2449#3-b} {
{PP / in << brief} {- LOC}
{NP / brief < VP} {! LOC}

}
{2450#0}{VBD < hit}{VBN}
{2450#3}{IN < around}{RB}
{2450#9}{ADVP / usually}{- TMP}
{2450#10}{IN < up}{RB}
{2450#12}{IN < down}{RB}
{2451#13}{SBAR <<, how}{- NOM}
{2451#13-b} {
{IN < down} {RP}
{ADVP / down} {PRT}
{PRT - DIR} {! DIR}

}
{2451#15}{S > SINV}{- TPC}
{2451#15}{SBAR <<, what}{- NOM}
{2451#19}{PP / on << side}{- LOC}
{2451#26-b} {
{JJ < unshackled} {VBN}
{ADJP - PRD < [VBN] $ [S]} {(VP \1 \2)}
{VP - PRD} {! PRD}

}
{2451#29}{NP / enterprises}{- LGS}
{2451#39}{PP / in <<` Washington}{- LOC}
{2453#1}{IN < down}{RB}
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{2453#4}{IN < down}{RB}
{2453#6}{IN < down}{RB}
{2453#11}{IN < down}{RB}
{2454#9}{PP / in <<` Zambia}{- LOC}
{2454#11}{NN < back}{RB}
{2454#14}{NP / night}{- TMP}
{2454#20-b} {
{SBAR <<, As} {! TMP}
{SBAR <<, As} {- ADV}

}
{2454#24}{PP / under <<` pressure}{! LOC}
{2454#25}{S < (VP <<, to << see)}{- PRP}
{2454#25-b} {
{SBAR <<, if} {! ADV}
{SBAR <<, if} {- NOM}

}
{2454#29-b} {
{VP / see < [S]} {1 NP}
{NP - SBJ / lions} {! SBJ}
{PP - PRD / in <<` action} {! PRD}

}
{2454#32}{PP / on <<` followers}{! LOC}
{2454#34}{ADVP / out}{PP}



Appendix D

The Principle of Indi�erence

The Principle of Indi�erence (or Insu�cient Reason) is often stated as something like:
Absent evidence to the contrary, all outcomes of a trial should be assumed to have equal
probability.

It is virtually always attributed to Simon Pierre, Marquis de Laplace, though rarely with an actual
cite; a few give his Essai philosophique sur les probabilités (1814) as the source. While this document
remains a classic in the �eld (and an excellent read), the principle is not entirely original to this
work, not named in this work, and not even really stated as a principle in itself, though it is noted
in the discussion.

The �rst to enunciate the principle in some form was probably Jacques1 Bernoulli, in his Ars
conjectandi (1713) (emphasis mine):

Similarly, the number of possible cases is known in drawing a white or a black ball from
an urn, and one can assert that any ball is equally likely to be drawn; for it is known
how many balls of each kind are in the jar, and there is no reason why this or that ball
should be drawn more readily than any other.2

The connection between this citation and the Principle has been made in a number of places,
but while the quote is de�nitely getting at the idea, it is made only in terms of the speci�c case
under consideration. His nephew Daniel Bernoulli stated the principle in a more general form, and
more clearly recognisable as a statement of the Principle in Specimen theoriae novae de mensura
sortis (1738):

Since there is no reason to assume that of two persons encountering identical risks, either
1a.k.a. James, Jakob, or Jacobi
2English translation found in (Calinger, 1995), created from the German translation by R. Haussner. In the original

Latin: �Sic itidem noti sunt numeri casuum ad educendam ex urna schedulam albam nigramve, & notum est omnes
æquè possibiles esse; quia nimirum determinati notique sunt numeri schedarum utriusque generis, nullaque perspicitur
traio, cur hæc vel illa potius exire debeat quàm quælibet alia.�
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should expect to have his desires more closely ful�lled, the risks anticipated by each must
be deemed equal in value.3

By comparison, Laplace (1814) leaves it mostly implicit in his First Principle of the Calculus of
Probabilities: �The very de�nition of probability. . . is the ratio of the number of favourable cases to
that of all possible cases.�4 Earlier he gives most of it in the midst of some discussion (emphasis
mine):

The theory of chances consists of reducing all events of the same kind to a certain number
of equally possible cases, that is, cases about whose existence we are equally uncertain;
and of determining the number of cases favourable to the event whose probability is
sought. The ratio of this number to that of all possible cases is the measure of this
probability, which is thus only a fraction whose numerator is the number of favourable
cases, and whose denominator is the number of all possible cases.5

This is somewhat more clearly related to the Principle as we know it. Unquestionably, Laplace
understood and believed in the underlying fact of the principle (as early as 1776: �if we see no
reason why one case should happen more than the other� (Hacking, 1975, p. 131)). However, he
never really states it as a principle in its own right, acknowledging that the important notion is not
just equiprobability, but the indi�erence leading to the (presumed) equiprobability.

The �rst real statement of the Principle as such seems to come from Johannes von Kries. In his
Die Principien der Wahrscheinlichkeits-Rechnung (1886), he states in Chapter I �4 (emphasis his):

When now the logical [consequence] of our knowledge should present itself in the perfor-
mance of a number of equally possible cases, thus arises without di�culty the explanation,
that two or more cases are to be regarded as equally possible, when in their respective cir-
cumstances we can �nd no reason to maintain one as possibly more probable than some
other.6

In the paragraph after this clear statement of the Principle, he names it (again, emphasis his):
We want to brie�y designate. . . that principle, on which the calculation of probability is
based, as the Principle of Insu�cient Reason.7

3Translation by (Sommer, 1954). Original not available.
4Translations from this work are based on (Dale, 1995). The original: �La dé�nition même de la probabilité...est
le rapport du nombre des cas favorables, à celui de tous les cas possibles.�

5In the original French: �La théorie des hasards consiste à reduire tous les évènemens du même genre, à un
certain nombre de cas également possibles, c'est-à-dire, tels que nous soyons également indécis sur leur existence; et à
déterminer le nombre de cas favorable à l'évènement dont on cherche la probabilité. Le rapport de ce nombre à celui
de tous les cas possibles, est la mesure de cette probabilité qui n'est ainsi qu'une fraction dont le numérateur est le
nombre des cas favorables, et dont le dénominateur est le nombre de tous les cas possibles.�

6All translations from this work are my own. In the original German: �Wenn nun das logische Verhalten un-
seres Wissens in der Au�ührung einer Anzahl von gleich möglichen Fällen sich darstellen soll, so ergiebt sich ohne
Schwierigkeit die Erklärung, dass als gleich möglich zwei oder mehrere Fälle anzusehen sind, wenn in dem jeweiligen
Stande unserer Kenntnisse sich kein Grund �ndet, unter ihnen einen für wahrscheinlicher als irgend einen anderen
zu halten.�

7The original German: �Wir wollen. . . das Princip, auf welches sie die Wahrscheinlichkeits-Rechnung basirt, als
Princip des mangelnden Grundes [bezeichnen].�
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Obviously, von Kries was aware of Laplace's work, and knew that the underlying implications were
not original; he states as much when relating the history of probability theory in Chapter X, at the
end of �3:

With that, we reach essentially the point of view on which Laplace stands. In his writings,
we �nd the short explanation: �equally possible cases, that is, cases about whose existence
we are equally uncertain�, a view in accordance with the Principle of Insu�cient Reason
that we have mentioned.8

Finally, early in the twentieth century, John Maynard Keynes gives the principle its now-more-
familiar name in his Treatise on Probability (1921):

The Principle of Indi�erence asserts that if there is no known reason for predicating
of our subject one rather than another of several alternatives, then relatively to such
knowledge the assertions of each of these alternatives have an equal probability. Thus
equal probabilities must be assigned to each of several arguments, if there is an absence
of positive ground for assigning unequal ones.

8The original German: �Hiermit ist im Wesentlichen der Standpunkt erreicht, auf welchem auch Laplace steht.
Bei diesem �nden wir die kurze Erklärung: �cas également possibles, c'est à dire tels que nous soyons également
indécis sur leur existence,� eine Au�assung, welche mit dem von uns so genannten Princip des mangelnden Grundes
zusammentri�t.�
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