
Catalogue your stuff: Database development and interface design

This project makes each student their own
customer, building a database that can store
information in a domain they care about. There are
two phases: first, their general design is approved,
and they implement some very simple SQL queries
in a minimalist GUI. Then, they choose to improve
either the back-end, with complex SQL queries that
do significant data manipulation, or the front-end,
with a better UI designed according to principles of
HCI. To the left, a game catalogue on the database
track; to the right, a book catalogue on the UI track.

A*: Problem spaces and heuristic search
In this project, students implement the A* shortest-
path algorithm, with a variety of admissible heuristics
to shape the search process. By dropping it into a GUI,
they can visualise the real effects of different choices in
the search policy. To the left is a screenshot of the GUI
and an initial map; below are that map's exploration
according to four different heuristics.

A Compressed, Breadth-second Approach
Implementing CS262c “Information and Knowledge Management”

Don Blaheta
Knox College

The compressed-
core program

Why compressed?
Knox College, like many liberal arts colleges, imposes a
limit as to how many courses can be required in order to
complete a major. Though we want them to have to take
advanced electives, we don't want to graduate any CS
majors without at least some exposure to all the different
subfields in CS. As a result, the compressed-core approach
outlined in CC20011 has proven to be an excellent fit.

Requirements for the
CS Major

—CS1, CS2
—Discrete math
—All 5 intermediate core courses

—including CS 262
—Any 3 advanced CS electives
—2 additional math electives

Requirements for the
CS Minor

—CS1, CS2
—Discrete math
—4 intermediate or advanced courses

—at least one advanced

The intermediate core
CS262: Information and Knowledge

Management
CS201: Computer Organization and

Assembly Language
CS226: Operating Systems and

Networking
CS205: Algorithm Design and Analysis
CS292: Software Development and

Professional Practice

CS262 Topics

Logic & Reasoning
—Propositional logic
—Predicate logic
—Prolog

Discrete probability
—Joint and conditional probability
—Bayes' Law
—Inducing probability models from data

Legal and ethical ideas
—Copyright, trademark, and other IP
—Free software/open source
—Privacy and security

Artificial Intelligence
—The Turing test
—Problem spaces and minimax
—Heuristic search (A*)

Human-Computer Interaction
—Affordances and cultural inputs
—Usability design principles
—Prototyping and user testing

Database systems
—DBMS structure and correctness
—Relational algebra
—Basics of SQL

Strengths of CS262c
As prerequisite. In addition to being a mandatory core course, CS262 is
a prerequisite for several upper-level classes, including Artificial
Intelligence and Database Systems. Since students already have the basic
concepts and skills in these areas, we are able to hit the ground running in
these electives and go further; in the advanced-level courses, students are
now implementing more sophisticated projects and reading and presenting
recently-published research papers on the cutting edge.

Project synergy. In some cases, projects will naturally have components
that correspond with multiple different units of material. For instance, any
realistic database project will need a user interface of some sort—and thus
the project can explicitly include both a DB design portion as well as an
HCI portion.

Language exposure. Though many acknowledge the value of exposing
students to multiple programming languages, departments whose CS1/CS2
sequence is entirely in one language often don't find time to introduce
students to other languages until much later. Our CS262 course spends
time in both Prolog (in the Logic and Reasoning unit) and SQL (in the
Databases unit).

Ethics and social issues discussion. The concept of information as
value is a natural fit for the theme of the course, and from there we find a
natural progression to copyright and intellectual property, open source
software, and privacy issues. In the most recent iteration of the course, we
had the students themselves research and present these topics, and lead a
discussion afterwards; this technique elicited rather more engagement and
discussion, and we plan to continue it.

Caveat Professor
Assignments are tricky. The first homework in nearly any course is
hard to write, because the students don't know very much about the topic
yet; here, nearly every assignment is one of these "first assignments".

Don't try to segue everything. The course is thematically driven by
issues of representing and processing information, but at its core a
‘breadth-second’2 course like this is still a sort of survey course—not quite
like the ‘breadth-first’ CS1 courses, but in a similar spirit—and sometimes
it's appropriate to just make a clean break and move on to the next topic.

Student experience is minimal. This depends to some extent on
where in your sequence CS262 falls, but if CS2 is the only prerequisite,
students may not have had important background in graph theory,
algorithms, and other concepts. Particularly if one is accustomed to
teaching upper-level courses in AI, NLP, and the like, it is important to
note that a unit of CS262 is not quite the same as the first two to three
weeks of an advanced course: the students don't have as much background.

Lack of textbooks. There are several textbooks whose first three to six
chapters would make an appropriate text for one unit of the course. At
$100 a book, it is obviously infeasible to require three or four books for the
course just for their introductory chapters. Knox's CS262 course has
instead gone without a required textbook, putting several textbooks on
reserve at the library and relying on a variety of web resources including
Wikipedia—a decent stopgap, but not really satisfactory in the long term.
This is probably the #1 stopper on a class like this, and mindful of that fact,
I'm thinking of assembling my notes into a textbook; please let me know if
you would be interested in hearing more about that!

1 ACM/IEEE Joint Task Force on Computing Curricula. Computing Curricula 2001: Computer Science. 2001. Find this poster and supporting material online at http://faculty.knox.edu/dblaheta/cs2622The 'breadth-second' idea is not new; it is mentioned in CC2001 as an alternative to breadth-first, and see also Gray and Frazier, "Introducing computer science after programming", Journal of Computing Sciences in Colleges 18:1, October 2002; and Brazier, Grabowski,
and Dietrich "Closing the CS I-II gap: a breadth-second approach", 33rd ASEE/IEEE Frontiers in Education Conference, Boulder, 2003.

Screenshots used with permission. Screenshots used with permission.

