
CMSC 442 Fall 2021 Dymacek

Lab Threads
10th of September, 2021

Getting started
There are both group and individual tasks in this project. Individual tasks are the responsibility of
a single group member. Group tasks are the shared responsibility of members in the group.

Your group should have a git repository containing the NachOS code base and including Dr.
Dymacek in your group.

Understanding threads
The first assignment is about implementing a working thread system and solving several synchro-
nization problems. You will need to read and understand the NachOS implementation in threads
directory.

To start you should compile NachOS by running make from inside the threads directory. After
compiling run the ./nachos programming. Read through threads/threadtest.cc for an example
test case.

When you trace a threads execution path, it is helpful to keep track of the state of each thread and
which procedures are on each thread’s execution stack. You will notice that when one thread calls
SWITCH, a different thread starts running, and the first thing the new thread does is to return from
SWITCH. We realize this comment will seem cryptic to you at this point, but you will understand
threads once you understand why the SWITCH that gets called is different from the SWITCH that
returns. (Note: because gdb does not understand NachOS threads, you will get bizarre results if you
try to use gdb to step through a call to SWITCH.)

The files for this assignment are:

• main.cc, threadtest.cc – a simple test of our thread routines (and which contains the main
function).

• thread.h, thread.cc – thread data structures and thread operations such as thread fork,
thread sleep, and thread finish.

• scheduler.h, scheduler.cc – manages the list of threads that are ready to run

• synch.h synch.cc – synchronization routines: semaphores, locks, and condition variables.

• synchlist.h, synchlist.cc – synchronized access to lists using locks and condition variables
(useful as an example of the use of synchronization primitives).

• system.h, system.cc – NachOS startup/shutdown routines.

• utility.h, utility.cc – some useful definitions and debugging routines.

• switch.h, switch.cc – assembly language magic for starting up threads and context switch-
ing between them.

• interrupt.h, interrupt.cc – manage enabling and disabling of interrupts as part of the
machine emulation.

• timer.h, timer.cc – emulate a clock tick that periodically causes an interrupt to occur.

• stats.h – collect interesting statistics

1



CMSC 442 Fall 2021 Dymacek

Properly synchronized code should work no matter what order the scheduler chooses to run the
threads on the ready list. In other words, we should be able to put a call to Thread::Yield (causing
the scheduler to choose another thread to run) anywhere in your code where interrupts are enabled
without changing the correctness of your code. You will be asked to write properly synchronized
code as part of the later assignments, so understanding how to do this is crucial to being able to do
the project.

To aid you in this, code linked in with NachOS will cause Thread::Yield to be called on your
behalf in a repeatable – but unpredictable – way. Nachos code is repeatable in that if you call it
multiple times with the same arguments, it will do exactly the same thing each time. However, if you
invoke ./nachos -rs #, replacing “#” with a different number each time, calls to Thread::Yield
will be inserted at different places in the code.

Make sure to run various test cases against your solutions to these problems using different
random seeds (that is, different numbers with the -rs flag).

Warning: in our implementation of threads, each thread is assigned a small, fixed-size execution
stack. This may cause bizarre problems (such as segmentation faults at strange lines of code) if you
declare large data structures to be automatic variables (e.g. int buf[100];). You will probably
not notice this during the semester, but if you do, you may change the size of the stack by modifying
the StackSize define in switch.h.

NachOS is written in C++. Most real operating systems (including both Linux and Windows)
are written in C, rather than in C++. This reduces the amount of wasted time and space imposed
by using a high-level programming language. Although the solutions to these labs can be written
as normal C routines, you will find organizing your code to be easier if you structure your code as
C++ classes or structs. Also, there should be no busy-waiting in any of your solutions to
this assignment.

Group Task
Implement locks and condition variables, using semaphores as a building block. We have provided
the public interface to locks and condition variables in synch.h. You need to define the private
data and implement the interface. Note that it should not take you very much code to implement
either locks or condition variables. If your code starts getting messy, you’ve probably gone wrong
somewhere.

A lock is like a “mutex” semaphore, except that it can be in only one of two states: locked or
unlocked. Exactly one thread can “hold” the lock at a time and no other thread can acquire the
lock until the thread that holds it has unlocked it. If a thread which doesn’t hold the lock tries to
acquire the lock, it is put to sleep. When a thread releases a lock, exactly one waiting thread (if any
are available) should be woken up and immediately acquire the lock.

Unlike semaphores, releasing a lock multiple times does not allow multiple threads into the
critical section. Locks can (and should) be implemented using semaphores. You may need other
variables or data structures as well. Please read the comments in threads/synch.h and be sure you
understand them.

A “condition variable” is another synchronization construct that can be implemented with
semaphores (or, really, with locks that use semaphores). Threads can wait on a condition, sig-
nal that they are done with a condition, or send a broadcast that wakes up all threads waiting on
the condition.

Condition variables are used to protect code without creating a deadlock. When a thread that
holds a lock does something that might cause it to go to sleep, it “waits” on a condition. This allows
it to “give up” the lock temporarily and then go to sleep. To wake it up, another thread will “signal”
the condition. This causes one of the threads waiting on the condition to wake up and immediately
re-acquire the lock it gave up. A “broadcast” behaves like a “signal” except that it wakes up ALL
threads waiting on the condition. (Only one of them will successfully acquire the lock, but this is

2



CMSC 442 Fall 2021 Dymacek

handled by the “lock” implementation, not the “condition” implementation.)
You must implement locks and conditions in such a way that:

1. The description above is followed.

2. If used correctly, no deadlocks occur.

3. If used correctly, no two threads can ever enter a critical section protected by the lock.

You will build test cases to demonstrate that your implementations work. You will need to
include appropriate random seeds as well.

Individual Task 1
Create new files named pipe.h and pipe.cc that implement a “pipe message passing system” as
follows:

In pipe.h build a struct or class named Pipe and add prototypes for two functions, void
Send(int msg) and void Receive(int* msg). Then, in pipe.cc, implement functions for send
and receive, using condition variables. Messages are sent on “pipes”, which allow senders and re-
ceivers to synchronize with each other. Send(msg_in) atomically waits until Receive(msg_pointer)
is called on the same pipe, and then copies msg_in into the buffer pointed to by msg_ pointer.
Once the copy is made, both can return. Similarly, the Receive waits until Send is called, at which
point the copy is made, and both can return. (Essentially, this is equivalent to a 0-length bounded
buffer!) Your solution should work even if there are multiple Senders and Receivers for the same
pipe.

You should also implement a Close() function in your Pipe structure. After the pipe has been
“closed” neither Send or Receive should block. Future calls to Send should do nothing and future
calls to Receive should fill the buffer with -1.

Individual Task 2
Implement Thread::Join in NachOS . Add an argument to the thread constructor that says whether
or not a Join will ever be called on this thread. Then create a Join function.

The Join function causes the currently running thread to wait for some other thread (passed as
a parameter to the Join function) to terminate. The other thread should be a child of the currently
running thread, created by the Fork function.

Your solution should properly delete the thread control block when the thread finishes, whether
or not Join is to be called, and whether or not the forked thread finishes before the Join is called.

Getting this task correct is essential to the proper working of your future NachOS projects, so be
sure you test it carefully.

Individual Task 3
Create two new files alarm.h and alarm.cc. In these files, implement an “alarm clock” class.
Threads call Alarm::GoToSleepFor(int howLong) to go to sleep for a period of time. The alarm
clock can be implemented using the hardware Timer device (see the file timer.h). When the timer
interrupt goes off, the Timer interrupt handler checks to see if any thread that had been asleep needs
to wake up now. There is no requirement that threads start running immediately after waking up;
just put them on the ready queue after they have waited for approximately the right amount of
time.

3



CMSC 442 Fall 2021 Dymacek

Handing in
Create a README.txt file which describes what each group member has done. You should include
which files have been changed and why. If you were unable to get something to work, explain the
problem. The documentation is an important part of the project. You will need to demo your code
for me after the due date.

This lab will be due on 09/22/2021 at 11:59pm.
This assignment is adapted from one by Dr. Robert Marmorstein and this lab, and all the other

Nachos labs were derived from the original NachOS projects by Tom Anderson at UC Berkeley.
They have been modified to fit our lab environment and changes in the compilation software since
NachOS was originally published.

4


