CMSC 442 Fall 2021 Dymacek

Lab Multiprogramming in NachOS
28th of September, 2021

Understanding threads

The ability to run multiple programs simultaneously is called “multiprogramming”. In the previous
lab, you worked with test cases in which you created multiple threads by hand as part of the
operating system. In this assignment, you will work on code that allows NachOS to load and run
programs that have been compiled separately from the operating system.

So far, all the code you have written for Nach0S has been part of the operating system kernel.
In a real operating system, the kernel not only uses its procedures internally, but allows user-level
programs to access some of its routines via “system calls”.

In this assignment we are giving you a simulated CPU that models a real CPU. We cannot just
run user programs as regular UNIX processes, because we want complete control over how many
instructions are executed at a time, how the address spaces work, and how interrupts and exceptions
(including system calls are handled). Instead we use a simulator.

Our simulator can run normal programs compiled from C — see the Makefile in the ‘test’ sub-
directory for an example. The compiled programs must be linked with some special flags, then
converted into Nach0S format, using the program “coff2noff” (which we supply). The only caveat
is that floating point operations are not supported.

As in the first assignment, we give you some of the code you need; your job is to complete the
system and enhance it.

The first step is to read and understand the part of the system we have written for you. Our
code can run a single user-level ’C’ program at a time. As a test case, we’'ve provided you with a
trivial user program, halt; all halt does is to turn around and ask the operating system to shut the
machine down. This program is located in the test/ folder. The code for the program is in halt.c.
To compile it, cd to that folder and type make. If it fails to compile, you may need to first run the
makefile in the bin/ folder.

Run the program nachos -x ../test/halt. As before, trace what happens as the user program
gets loaded, runs, and invokes a system call.

It is OK to change the definition of the “machine” parameters. For example, the amount of
physical memory — if that helps you design better test cases.

Most of your work on this lab will be done in the userprog/ folder. The files for this assignment
are:

1. progtest.cc — test routines for running user programs.

2. addrspace.h, addrspace.cc — create an address space in which to run a user program, and
load the program from the disk.

3. syscall.h — the system call interface: kernel procedures that user programs can invoke.

4. exception.cc — the handler for system calls and other user-level exceptions, such as page
faults. In the code we supply, only the 'halt’ system call is supported.

5. bitmap.h, bitmap.cc — routines for manipulating bitmaps (this might be useful for keeping
track of physical page frames)

6. filesys/filesys.h, filesys/openfile.h — a stub defining the Nach0S file system routines.
For this assignment, we have implemented the NachOS file system by directly making the
corresponding calls to the UNIX file system: this is so that you need to debug only one thing
at a time.



CMSC 442 Fall 2021 Dymacek

10.

11.

machine/translate.h, machine/translate.cc — translation table routines. In the code we
supply, we currently assume that every virtual address is the same as its physical address — this
restricts us to running one user program at a time. You will generalize this to allow multiple
user programs to be run concurrently. We will not ask you to implement real virtual memory
support (with swapping) until the next lab. For now, every page must be in physical memory.

machine/machine.h, machine/machine.cc — emulates the part of the machine that executes
user programs: main memory, processor registers, etc.

machine/mipssim.cc — emulates the integer instruction set of a MIPS R2/3000 processor.

machine/console.h, machine/console.cc — emulates a terminal device using UNIX files. A
terminal is (i) byte oriented, (ii) incoming bytes can be read and written at the same time, (iii)
bytes arrive asynchronously (as a result of user keystrokes), without being explicitly requested.

bin/noff.h — defines the Nach0S executable file format.

You will also need to modify some of the files in the test/ folder.

1 System Calls

You must support ALL of the system calls defined in syscall.h except for thread Fork and Yield
(which will be implemented as an individual task, below).

To do this, you will need to expand the if statement in userprog/exceptions.cc which cur-
rently only handles the Halt system call. You will need to add an else if clause for each of the
system calls listed in userprog/syscall.h. You need to write helper functions in a separate file
named syslib.cc and call them from your if statement (this will require adding the new file to
Makefile.common). I recommend prepending “sys” or “lib” (ie sysCreate) to your helper functions
to logicially seperate MIPS system calls from the UNIX helper functions.

Do not make any changes to syscall.h since it’s used both by NachOS kernel code and by the
test programs that will run in the operating system.

If you read the comments in these files carefully, you will learn two useful things:

1.

Arguments to the system calls are passed in registers 4 through 7. Any return value should be
written to register 2. The Machine class has ReadRegister and a WriteRegister functions.

Note: After processing a system call, your code in exception.cc must also advance the pro-
gram counter, which is stored in the PCReg register. The assembly language Nach0S simulates
is MIPS-based, which means every instruction is exactly 4 bytes long.

. Arguments to the system calls are addresses in “user space”. That is, they are logical (virtual

memory) addresses, not “physical addresses”. This means Nach0S can’t access them directly —
they must be translated. To do this, you will need to use the ReadMem and WriteMem functions
in machine/translate.h.

To aid in implementing your system calls. You need to write four memory helper functions.

Kernel Memory Functions

1.

int libReadString(char* from, char* to, int max) Read at most max characters from
MIPS memory into an UNIX buffer, stops reading at the '\0' character. Returns the number
of characters read or -1 if there was an error.

. int libReadBytes(char* from, char* to, int max) Read at most max bytes from MIPS

memory into an UNIX buffer. Returns the number of bytes read or -1 if there was an error.



CMSC 442 Fall 2021 Dymacek

3. int libWriteBytes(char* from, char* to, int max) Write at most max bytes from an
UNIX buffer to MIPS memory. Returns the number of bytes written or -1 if there was an
error.

4. int libWriteString(char* from, char* to, int max) Write at most max characters from
an UNIX buffer to MIPS memory, stops writing at the '\0' character. Returns the number
of bytes written or -1 if there was an error.

Note that you need to “bullet-proof” the Nach0S kernel from user program errors — there should
be nothing a user program can do to crash the operating system (other than calling Halt directly).

2 Files

Basic file I/0 is handled by system calls.

Create

Create is one of the easiest system calls to implement and test. To implement Create, you should
use the Create function of the FileSystem class in filesys/filesys.h. You can test it by creating
a program in the test/ folder that calls the create system call (use the code in halt.c as a model
— don’t forget to update the Makefile in test/ to build your test case). You can then use 1s at the
Linux command prompt to see if the file has been created in your userprog/ directory.

Until you implement Read and Write and the SynchConsole class, you won’t have an easy
way to print debugging statements. If you get Create working (and tested), you can kind of hack
around this by using the Create system call to create files at different points in your MIPS test
code.

Open

To implement Open, you should use the Open function of the FileSystem class which returns an
OpenFile pointer. You will need to store that pointer in some kind of in each address space
data structure. A vector or an array of OpenFile pointers works well. You should return a unique
integer id that can be used later to retrieve the pointer from your data structure. The Read and
Write functions will use that id number to access the pointer.

Close

There is no “Close” function in the OpenFile class. Instead, the destructor closes the file. Your
Close system call should delete the corresponding OpenFile object and remove it from the file table
data structure. You should implement this in a way that makes it possible to open at least 254
simultaneous files, close them, and open 254 more files. That is, we should be able to re-use closed
file descriptors.

Read and Write

The read and write system calls are used for two separate tasks. If passed a file descriptor (OpenFileld)
of ConsoleInput (0) or ConsoleQutput (1), they are used for Console I/O. If passed a file descrip-
tor of two or more, they read and write to a file. To do file read and write, you should look up the
file descriptor in your file table and then use the Read and Write functions in filesys/openfile.h
to get input or produce output to a file.



CMSC 442 Fall 2021 Dymacek

3 Console

In order to really test your code, you need to be able to print to the console. Add if statements to
your Read and Write functions so that if they are passed the ConsoleInput or ConsoleQutput ids
(respectively) they will read from or write to the console instead of a file.

NachOS provides a Console class which will allow you to read or write a single character at a
time from the console, but access to this console device is currently “Asynchronous”, which means
that if two threads print a line, that line can be interrupted, causing a race condition.

Also, access to the Console is a producer/consumer system — we don’t want to read from the
console buffer until data is actually there (otherwise, we'll get garbage) and we don’t want to write
to the console while the previous character is still being output (otherwise, we might clobber it and
not print everything).

To support Console Read and Write, create a SynchConsole class that provides the abstraction of
synchronous access to the console. Then create a global SynchConsole object in threads/system.cc
which your system calls can use. The file progtest . cc has some example code for using the Console
class. You can use this as the basis for the functions in your SynchConsole. I highly recommend
using Locks and Conditions.

UPDATE 10/06

Implement the following functions in your SynchConsole:

1. int readLine(char* into, int maxLen) — reads up to a new line, carriage return, end of
file, null character, or maxLen. (think getLine)

2. void writeString(char* from, int maxLen) — writes up to maxLen characters or the null
character

4 Processes

You also need to implement the remaining system calls (Exit, Join, and Exec). These system calls
mostly involve process control. You will need to implement a Process structure/class, as well as
a “process table”. The process table will map “Process IDs” to Process instances. Each Process
should keep track of its child processes and its parent process. You may also need to give AddrSpace
objects a way to keep track of a PID. Process IDs should be able to be reused. A Process will need
to know the PIDs of its children and its parent.

Exit

The Exit system call causes a thread to exit (calls Thread::Finish) and sets the process’ exit
status.The exit status is an integer value which is set by the Exit system call and retrieved (in
another thread) by the Join system call.

The Exit system call should clean up any unneeded process data structures. Note that a Process
cannot be removed from the process table until there is no chance of a Join being called on it.

Join

This is called by a process (the parent) to wait for a child process to exit. If the parent is still active,
then Join blocks until the child exits. When the child process has exited, the Join call returns the
child’s exit status. You may assume that Join will be called on a process at most once.

This is different from Thread: : join.



CMSC 442 Fall 2021 Dymacek

Exec

Exec in NachOS is more like the exec syscall in Windows than in Linux. It both creates a new
thread (with a new address space) and loads a program from disk into the address space for that
thread. This is very similar to the “StartProcess” function in userprog/progtest.cc. The parent
thread continues running as before.

Exec returns the process id of the new thread (so that the parent process can call Join on it
later).

5 Multiprogramming

Every thread in NachOS is given its own AddrSpace (address space) object which keeps track of
which pages of physical memory have been allocated to it. Right now, we assume that only one
process is running at a time.

Implement multiprogramming with time-slicing. Most of the code will probably go either in your
StartProcess function or in the Addrspace class.

UPDATE 10/06

You will need to:

1. create a new Page structure containing a TranslationEntry and a byte buffer of size PageSize

2. write a function Page AddrSpace::Fetch(int vpn) which will read the Page at wirtual page
number VPN from the executable. This will involve reading segments. A page may contain
bytes from multiple segments. The Page may be in the uninit segment or in the stack. (Both
should be zeroed out)

3. move loading the executable from the AddrSpace::AddrSpace() into a new function bool
AddrSpace: :LoadExecutable(char* filename)

4. write a function bool AddrSpace: :Place(Page* p) which places the Page into main memory,
updates the pageTable, and p. If the Page cannot be placed return false.(The data structure
in bitmap.h is useful)

5. use timer interrupts to force threads to yield after a certain number of ticks. This can be done in
the TimerInterruptHandler function you used for your alarm clock. Note that scheduler.cc
saves and restores user machine state on context switches automatically.

6 Individual Tasks

Exec with arguments

The Exec system call does not provide any way for the user program to pass parameters or arguments
to the newly created address space. UNIX does allow this, for instance, to pass in command line
arguments to the new address space. Implement this feature! (You will need to pass the arguments
on the stack to main)

Shell and strings

NachOS provides a “shell” program that provides you with a simple command prompt, but very
little other functionality. Rewrite the program for readability and future expansion.

Create a library of functions, nachosLib.h, to be used in your test directory. Your test programs
can #include your library to have access to the functions. (You can use a different prefix)



CMSC 442 Fall 2021 Dymacek

1. int nac_strlen(char* str) — return the length of the string str
2. void nac_strcpy(char* destination, char* source) — copies source into destination

3. void nac_strcat(char* destination, char* source) — concatenates source onto destina-
tion

4. char* nac_strstr (char* search,char* token) — returns a pointer to the first occurence
in search of the characters in token, NULL if none

5. int nac_atoi(char* str) — converts str into an int, if not a valid integer behavior is unde-
fined

6. void nac_itoa(int i, char* str) — converts i to string representation

Threads

Implement multi-threaded user programs. Implement the thread fork and yield system calls, to allow
a user program to fork a thread to call a routine in the same address space, and then ping-pong
between threads.

Yield The Yield system call simply causes the current thread to yield the CPU. (Woot, the easiest
system calll)

Fork When a process calls Fork, you must allocate a new AddrSpace for it and then call Thread: :Fork.
The new address space should have its own set of stack pages, distinct from those in the par-
ent process. It should share all other pages (including those for the code segment and the
data segment) with its parent process. This will require you to write a new address space
constructor.

NachOS systems with thread support should define the semantics of Exit in the following way.
Exit indicates that the calling thread is finished; if the calling thread is the last thread in the
process then it causes the entire process to exit (e.g., wake up parent if any). The status value
reported by the last thread in the process to call Exit shall be deemed the exit status of the
process, to be returned as the result from Join.

7 Handing in

Create a README.txt file which describes what each group member has done. You should include
which files have been changed and why. If you were unable to get something to work, explain the
problem. The documentation is an important part of the project.

This lab will be due on 10/15/2021 at 11:59pm.

This assignment is adapted from one by Dr. Robert Marmorstein and this lab, and all the other
Nach0S labs were derived from the original NachOS projects by Tom Anderson at UC Berkeley.
They have been modified to fit our lab environment and changes in the compilation software since
NachOS was originally published.



