
The Lambda Calculus

notes by Don Blaheta

October 12, 2000

“A little bondage is always a good thing.” —sk

We’ve seen that Scheme is, as languages go, pretty small. There are just a few
keywords, and most of the utility of the language is inherent in its minimal,
unornamented structure, unlike, say, “public static void main” Java. We can
come up with a short list of fundamental Scheme concepts:

if
lambda
cons
define
car

cdr
numbers
arithmetic
symbols
true

false
(
)

Without motivating it too deeply, let’s consider how we could reduce this list
further, by implementing some of these features in terms of others.

Warming up: booleans and conditionals

In Scheme, what is the basic way of making conditional statements?

(if C T F)

There is a form that begins with the keyword if, and has three arguments, a test
expression C , and things to do depending on the value of C . C is a boolean, and
as such can have two possible values, true and false. How might we represent
these? Well, these values are making a choice between two values, so why not
pass in the values and let them choose?

true ≡ (λ(T F) T)
false ≡ (λ(T F) F)

1

Thus true and false are functions with an arity1 of 22 that select one or the
other of their arguments. if then is simply

(if C T F) ≡ (C T F)

, which applies its first argument to the other two. Note that for the usual ‘short-
circuiting’ behaviour of if to work (and it is necessary, in order to properly
terminate recursion, avoid dividing by zero, etc.), evaluation must be lazy, that
is, we don’t actually evaluate an expression until we need its value, e.g. to
perform arithmetic on it. Since we never need a value from the unused half of
the conditional, we never try to evaluate it and the short-circuiting behaviour
is preserved.

We’ve thus eliminated if, true, and false from our list. Thus emboldened, we
move on to

Lists

What, really, is a Scheme list? It’s a pair, with the first value of the pair
representing the first item of the list, and the second half of the pair containing
the rest of the list. To use standard LISPish terminology,

(car (cons A B)) ≡ A

(cdr (cons A B)) ≡ B

So how can we represent a cons? If we think in an object-oriented way for a
moment5, we realise that a list, or a pair, is something that we want to feed two
values into, and then be able to pass messages to in order to get those values
back out. Well, we can feed two values in as arguments—

(λ(a b)

—and then return something that reads messages and uses them to act on the
data—

(λ(m)(m a b))) .

1The “arity” of a function is simply a fancy word for the number of arguments it takes.
Derived from ‘binary ’, ‘ternary ’, ‘n-ary ’.

2We can simplify further and make λ only create functions of one argument by currying3

the arguments; for legibility and convenience we will not be doing this here.
3To ‘curry’ a function of n arguments, one makes a function of 1 argument that returns a

function of n−1 arguments, repeating until n = 1 at which point you perform the calculation
in the original n-ary function. Named after Haskell Curry4, who did much of the early work
with the process, though it was actually invented by a guy named Schönfinkel; presumably
“schönfinkeling” was considered too unwieldy a term.

4A local—his parents were the founders of Curry College of Boston.
5Just make sure to wash your hands afterwards.

2

Our messages m that we pass in obviously have to be functions, and since they’re
fed the two halves of the pair as arguments, they just pick one and return it:

car ≡ (λ(a b) a)
cdr ≡ (λ(a b) b)

Just like true and false! This isn’t too surprising, though, since the structure is
fairly similar: like conditionals, which select between two expressions to evalu-
ate, the list operators are also selecting between two values (the halves of the
pair).

That removes cons, car, cdr from our list. Let’s move on to something a little
more challenging.

Something a little more challenging: Numbers

First, a simplifying assumption: we will only deal with the set of natural num-
bers. That is, all integers not less than zero, or to put it more usefully, a natural
number is either zero or one plus a natural number.

What is a number? A number is a count of stuff. It’s a number of things, it’s
a number of sheep, it’s a number of whatever you want it to be. Such as...
function applications? Consider

N = 0 0 function applications
| 1 + N 1 more function application than N

What function should we use? It doesn’t really matter. Pick something relevant
to the task at hand.

0 ≡ (λ(f) (λ(x) x))
1 ≡ (λ(f) (λ(x) (f x)))
2 ≡ (λ(f) (λ(x) (f (f x))))

N ≡ (λ(f) (λ(x) (fN x)))

This numeric representation is known as a “Church numeral”6. To get a Scheme
number out of a Church numeral, just use add1 for f and 0 for x.

Of course, numbers aren’t all that useful in and of themselves, until we can
do things with them. Like the “succ” function, i.e. add1. It takes a Church
numeral. What does it return? A Church numeral, which is starts with λf ,
then λx, and the actual result is f applied one more time:

succ ≡ (λ(n) (λ(f) (λ(x) (f ((n f) x)))))
6Not an ecclesiastical appelation, but an honorary one—they are named after their discov-

erer, Alonzo Church, who was a contemporary of Curry, Schönfinkel, Turing, and that whole
crowd.

3

What about addition? Well, we can be a little creative here and use our Church
numerals—they apply a function n times, and we have a “plus 1” function
(succ), so we take one of the addends a, and use the other addend b to apply
the succ function b times:

add ≡ (λ(a) (λ(b) ((a succ) b)))

Similar reasoning can be used to get multiplication—a × b is just adding b, a
times, to zero.

mult ≡ (λ(a) (λ(b) ((a (add b)) zero)))

But we ain’t seen nothing yet. Increasing a number is easy (“easy”), because
you can just wrap a few more function applications around it. But once you’ve
done that, you have a closure, and since you can’t see into a closure, how can
you reduce the number of function applications? How in the world can we do
the ‘pred’ function (subtract one)?

A brilliant intuition by Stephen Kleene7 shows us that it is possible8. This fun-
damental insight goes as follows: ultimately, we want a mapping from numbers
to their predecessors; we could view this as a list of pairs. Each pair contains a
number and its predecessor (ignoring the base case of zero, for now)

〈0, 0〉
〈1, 0〉
〈2, 1〉
〈3, 2〉

Well, it’s pretty easy to construct one pair if you already have the previous one,
so what we need is something that will take the base case of 〈0, 0〉 and find
the nth pair from there. As it happens, the Church numeral itself will do this!
Once we have the nth pair, we merely look at the second half to find the value
of n − 1. Thus we have

pred = (λ(n)
(cdr

((n (λ(p)
(cons (succ (car p))

(car p))))
(cons 0 0))))

And finally, to wrap up the numbers section, we need some numeric test in order
to bottom out our recursion. How do we test if something is zero? Well the

7Another of those swinging theoreticians of the 1930s. This stuff is way cooler than regular
expressions, though that was the field where Kleene’s name became more famous.

8And indeed, put his advisor, Alonzo Church, back on his track of research in this area.

4

number 0 is represented by zero function applications, so we need to pass our
number a base case that starts out true, and a function that returns false if ever
applied. Simply,

zero? = (λ(n)
((n (λ(dummy) false) true))

Good, that knocks numbers and arithmetic off our list; there’s not much left:

lambda define symbols ()

The parentheses aren’t going away, and symbols will be left as an exercise to the
reader. That leaves define as the only thing not defined in terms of lambda;
that is,

What’s left? Recursion.

Our first instinct is simply to define factorial as

fact = (lambda (n)
(if (zero? n)

1
(* n (fact (sub1 n)))))

, which (except for the symbols) we’ve now shown can be entirely reduced to
lambdas. Problem is, it doesn’t work: fact hasn’t yet been bound when we use
it in the last line. Well, we could do

fact = (lambda (n)
(if (zero? n)

1
(* n ((lambda (n)

(if (zero? n)
1
(* n (fact (sub1 n)))))

(sub1 n)))))

ad nauseam, but of course that’s just postponing the problem. However, there is
a pattern here, and we know what to do with patterns: lambda-abstract them.

((lambda (mk-fact)

...
)

(lambda (fact)
(lambda (n)

(if (zero? n) 1 (* n (fact (sub1 n)))))))

5

So far, now, we’ve just assigned a name: we’ll call those last three lines mk-fact.
What goes in the ...? Let’s first try something like

(mk-fact)

, which is to say, is something we don’t want to touch, if we do it’ll blow
up. Well, if we can’t touch the bomb that the symbol fact is bound to, we
can’t do the recursive case—but we can do the base case. So (mk-fact)
returns a function that correctly calculates the factorial of zero, with unspecified
behaviour if you pass it other stuff. Not very useful, but now consider

(mk-fact (mk-fact))

First time through, fact is now bound to (mk-fact), so if it tries to call
fact the recursion actually works. But not very well, because that second time
through, touching fact hits the . All the same, we now have something that
correctly calculates the factorial of both zero and one. Ultimately, this isn’t any
different than the version where we kept rewriting the entire function, but at
least it’s more succinct and compact.

However. Consider what happens when we try

(mk-fact mk-fact)

That is, the entire thing looks like this:

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (fact)
(lambda (n)

(if (zero? n) 1 (* n (fact (sub1 n)))))))

The mk-fact in line 1 feeds its value to the two mk-facts in line 2; the second
of these becomes the value of fact in the function of lines 3–5, and this function
is itself bound to mk-fact. Nifty, we seem to have set up recursion. Of course,
that last line won’t work, since fact (whose value is mk-fact) is expecting a
function, not a value like (sub1 n), so let’s feed it a function, like say fact.
Meanwhile, we should rename fact since it is no longer a number-to-number
function, but a function-to-function function that makes a factorial function;
how about a name like “mk-fact”?

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (mk-fact)
(lambda (n)

(if (zero? n) 1 (* n ((mk-fact mk-fact) (sub1 n)))))))

6

Mind-boggling. Why/how does it work? By making sure that anytime we are
about to “run out of function”, we make another one. Earlier, we noted that if
we’re taking the factorial of zero, it doesn’t matter what the value of mk-fact
is— or anything else. And if we follow the recursive case, we run mk-fact
to generate a function that will do one iteration of fact. Inductively, it then
works for all cases.

Those last two lines are almost, but not quite, the pretty factorial function we
all know and love, but that (mk-fact mk-fact) is ugly and doesn’t have much
to do with the actual factorial. We can abstract that out... and what to name
it? Why, fact, of course:

((lambda (mk-fact)
(mk-fact mk-fact))

(lambda (mk-fact)
((lambda (fact)

(lambda (n)
(if (zero? n)

1
(* n (fact (- n 1))))))

(mk-fact mk-fact))))

That is, (mk-fact mk-fact) is bound to fact, giving us exactly the previous
version.9 But a further modification is desirable: lines 3–5 here are really the
meat of the factorial calculation, while lines 1, 2, and 6 are all part of the
instrumentation of making the recursion work, and furthermore, those lines
could be reused for other functions we want to be recursive. Thus we have the
function

(lambda (f)
((lambda (x) (x x))
(lambda (x) (f (x x)))))

This function is known as Y , or the Y -combinator, and it enables one to perform
recursion in the lambda calculus. It obeys the equality

(Y f) ≡ (f (Y f))

, that is, it is a fixed point.
9Note that this crucially only works under lazy evaluation—otherwise the (mk-fact

mk-fact) would get evaluated once, get its value bound to fact, and that’d be the end
of it, but we need fact to generate a new function each time through. In fact, the lambda
calculus always requires lazy evaluation; there is a parallel theory known as the lambda-value
calculus in which eager evaluation is used. It is left as an exercise to the reader how to modify
the example so that it would work in an eager regime.

7

A job well done: Epilogue

We have now reduced our language to the following three-case grammar:

Λ :== 〈var〉
| (Λ Λ)
| (λ(var) Λ)

The language Λ has, simply, variables, function application, and abstraction;
nothing else. It is known as the lambda calculus, and its development in the
1930s made theoreticians deliriously happy, because A) it strongly lends itself
to inductive proofs, and B) the proofs need only deal with three cases!

Back in the 1930s, a lot of people were asking the question, “what can we com-
pute?” This was not a trivial question, as it had important bearing on whether
one language (or method of computation) was ‘more powerful’ than another
(is C more powerful than Scheme? and so on). Turing tried and succeeded in
reducing a huge variety of computation to a few simple operations involving a
tape with a read/write head; meanwhile Church, Curry, et al were attacking the
same problem from a completely different direction, and reduced a huge variety
of computation to the lambda calculus. Happily, it was proven that Turing’s
tape machine and Church’s lambda calculus are isomorphic—an algorithm in
one can be reduced to an algorithm for the other—so that theoreticians can
prove things under one system or the other, as convenient. Obviously, though,
the ones that prove using the lambda calculus are much cooler.

8

