CMSC389 Artificial Intelligence Blaheta

Homework 2
Due: 10 February 2022

Problem 2.1

Consider the problem of building a computer from parts. There are a number
of functionalities that have to be filled by the various parts: providing RAM,
providing video, providing a CPU, and so on; and some parts provide only
one of those while others do more than one thing. (For instance, some
motherboards provide both the basic motherboard functionality and also on-
board video.) Certain parts are not compatible with other parts, e.g. due to
mismatching connectors, or unmet power requirements. You’d like to build
a computer as cheaply as possible that still is internally compatible and fills
all the required functionalities.

Formalise this planning process as a problem space search. Include the data
types and functions as discussed in class, and for the functions, describe
(briefly) what they do or how they work.

Problem 2.2

Consider a 2D-grid-based pathfinding problem where locations in the grid
are the states in the problem space, and one of them is a “start” location (the
initial state) and another is a “finish” (the goal state). Define the available
actions as moving in a cardinal direction for a cost of 1 or diagonally for
a cost of 1.5 (unless this would end up inside a wall or off the edge of the
grid), and the transition function as returning the location (state) that is in
that direction from the current location.

Now consider the following three heuristic functions (where the subscripts
stand for “zero”, “Manhattan”, and “Euclidean” respectively). Each func-
tion h evaluates a state X, where F represents the location of the goal:

o hy(X)=0

b hM(X):|Fx_X:r|+|Fy_Xy’

® hp(X)= \/(Fx - Xz)* + (Fy _Xy)2

CMSC389 Homework 2 10 February 2022

Each can be used as the h component of a ranking function f:
f(X) = g(X) + h(X)

The resulting f functions can be labelled fz, fas, and fg and used as the
priority function in an A* algorithm searching for a path from start to finish.

For each of the three f functions, decide whether its use gives rise to an
admissible search in this system. If it is admissible, prove it (i.e. explain
why—informal proofs are fine). If it isn’t admissible, devise a test case that
would lead the algorithm to find a non-optimal path (and explain/show how
the test case fails).

Problem 2.3

Consider again the word ladder problem from Project 0. You implemented it
as a search process, probably a brute-force breadth-first search; consider now
what would be required to implement it as an A* search. What would be the
definition of g(X) (distance-to-start)? What would be an appropriate h(X)
heuristic function? For your heuristic function, explain why it is admissible,
and discuss whether there could be an even more informed heuristic function.

