CMSC389 Artificial Intelligence Blaheta

Project 1: Game Al
Due: 22 February 2022

In this project, you’ll choose one of the games we’ve been working on in
class, and implement it in a program that lets a human play against the
computer.

The exact details of your program’s interface are part of your design task.
Your program will need to be able to distinguish and display all valid board
states, and accept user input permitting all valid actions.

Checkpoint

For the checkpoint (next Tuesday), you should have a program that:

e has a plan for modeling all possible valid states and actions,

e displays a reasonable view of the initial board state,

reads actions from the keyboard,

makes the correct state update, once, for at least one valid action, and

displays the resulting board.

The model plan can be given in a readme if its final code implementation
is not yet 100% complete at this point. It can also be given as code, and I
will read the code, but your readme has to tell me where to look for it.

Note: Every game on the list either has a board more complicated than
“just a 2D array of items” or a fairly complicated action/piece situation, so
if you have a plan like “model is 2D array of int, view is just print it out in
a rectangle” (and especially if you chose a particular game on that basis),
you should consider further.

The checkpoint version is due at 4pm on Tuesday, 8 February.

v20220209-0245

CMSC389 Project 1: Game Al 22 February 2022

Final version

A full-credit final version will be a complete, non-buggy, working implemen-
tation of one of the games specified above, TOGETHER WITH convincing
proof that it is correct. The “proof” should consist of test cases (in whatever
format is convenient to you) to illustrate various situations, including both
input and expected results.

Remember that there need to be clear instructions on how to run it in general
as well as how to run each/all of the tests and quickly verify that they ran
correctly (and which rubric items each one corresponds to); and don’t forget
to explain how to enter actions and interpret the display! Having complete
and correct documentation is an easy 15 points, but if your documentation
omits important info or tells me the wrong thing, you’ll get less than full
credit there.

After checkpoint work (15 points) and documentation (15 points), there
remain 70 points in the rubric, which will be awarded according to the table
below. Under each score, I show (for your convenience) the total cumulative
points if you get that item plus all the previous points, and the letter grade
this corresponds to. The order is less significant than usual here; different
rubric points are easier or harder depending on which game you chose. You
can in general get points for the later ones (if they work) without getting
the earlier ones.

Note that ICO solutions max out at 90/100 points, because its state space
is so low-dimensional that you can in general search to goal states and not
bother with a heuristic. (Also note that state representation is a bit painful
for 1CO.)

The game Reflecto is NOT available for this project, for reasons we’ll discuss
in class (and in homework).

The other games all have various pros and cons, but all of the rubric points
will be available for them.

NOTE: if your code doesn’t compile, or immediately crashes when it’s run,
you will get zero of these points. Don’t let this happen to you!

CMSC389 Project 1: Game Al 22 February 2022

Score

Description

State model and view, and human player controller

10
(40/D—)

5
(45/D)

)
(50/D+)

5
(55/C-)

5
(60/C)

Displays initial board, reads a human-player action, applies and
displays result

Can load and display state of a game already-in-progress from
a file (crucial for testing and demoing many of the later rubric
items); format of this file can represent any valid game state
and either the human or Al as “next player”

Detects end-game state (and scores it, if appropriate) and re-
ports the result

Accepts all human-player actions in a usable format, and re-
sponds correctly to all valid ones (even ones not available from
the initial state)

Rejects all invalid human-player actions, without rejecting any
valid ones

Al player controller

5
(65/C+)

)
(70/B-)

(75/B)

(80/B+)

Can identify at least one valid available Al action, and take it,
in any state where the Al has a valid action

Can play game from start to completion without crashing or
hanging, alternating between human-player actions and Al-
player actions, with the Al player always choosing some valid
action (not necessarily a good one)

Can clearly enumerate (perhaps in a debugging statement to
cerr, possibly triggered by a command-line option or in-game
command) a complete list of valid available Al actions (without
any invalid ones) from any valid state

Chooses action to immediately win/not immediately lose game
in cases where Al action would end the game

CMSC389 Project 1: Game Al 22 February 2022

Score Description

5 Uses minimax to make good choices at least in the cases where

(85/A=) a win or loss is just a few actions away (i.e. without needing
heuristics)

10 Implements and uses a reasonable heuristic evaluating board

(95/A) states, with very positive scores corresponding to better boards
for one player and very negative scores for the other, so the Al
player makes good choices even when a win is not imminent

) The computer is capable of playing as either player (black/white,
(100/A+) red/blue, whatever) based on command-line options.

1 These points unavailable for ICO.
The final version is due at 4pm on Tuesday, 22 February.

Handing in

Hand it in as proj1 using the handin script.

