
CMSC262 DS/Alg Applied Blaheta

Project notes

These are some rules and guidelines that apply to all of the projects in this
course.

Project domains

Every project handout starts with an overview that sets up the problem.
It gives you information about the problem domain that you might not
be familiar with, and it sets the goals and motivations for the project. In
general, the handout will go out before I’ve covered all the material you’ll
need to complete the project, in part because I will use the ongoing project
as a running example in class—which means you’ll need to read it as soon
as it’s assigned, since I’ll be talking about it right away.

The Two Biggest Problems

I’m foregrounding this so you are certain to see it. These will be explained
in more detail below, but if you submit

� a program that fails to compile, or immediately crashes on all inputs;
or

� only once for a final handin with a nontrivial amount of work;

then your entire project submission grade will be zero. This fate is
easy to avoid! Exercise care!

Checkpoints

After the overview of the project topic, the next portions of each project
handout will be checkpoint assignments. The first, which I refer to as “prep
work”, generally won’t work as much with the core conceptual content of
the project, but will give you a head start on things like input formats and
data structures that you’ll need. Which means you can (i.e. should) start
on it right away, even before we’ve finished covering the related content in



CMSC262 Project notes

class. If you happen to finish the prep work before its deadline and want to
work forward, that’s ok but hand it in before you start the other work.

The second checkpoint is the “design work”, which is to be written on paper
(or the equivalent) and brought to class: diagrams, test cases, and other
planning work that will help you understand how the program you’re writing
will need to fit together. I am looking for good-faith best-effort work here,
not perfection; we’ll talk about everybody’s design in class and improve
them, so that you’ll be well-prepared to really forge ahead on the main
body of the work.

Self-analysis: progress reports and “proof”

As you move from the prep and design work into the main body of the
project, you should have a plan for how to move from one version that
works a little bit to another version that works a little more (rather than
trying to type the whole thing in all at once and then debug it). To that end,
I’m requiring you to hand in your work regularly, at points where you’ve
completed an identifiable chunk of the work. There’s no hard-and-fast rule
here, but aim for perhaps 4–6 handins beyond the prep work, after you’ve
done 8–12 rubric points since the last handin.

Each time you hand in (or maybe even more often than that), you should
be able to do two things: identify and briefly describe what you’ve accom-
plished, and explain what makes you think it works.

To describe what you’ve accomplished, make sure any AI disclosures are up
to date and then add to the bottom of the readme a short note (maybe two
or three sentences) with the approximate date/time and a brief summary
of what you found tricky about that batch of work and how you problem-
solved it (and perhaps note things you’re not sure whether they’re correct
yet), and note any changes you needed to make in the earlier units as a
result of your later work. By the final handin you’ll have a running log of
several of these at the bottom of the readme.

As for what makes you think it works, your “proof”1 should be organised
by rubric line and point to what part of the code, or what test case, or what
other evidence you have that shows you’ve met the criteria for the rubric
point. If your project manager or boss asked why you thought you were

1Note the scare quotes—not a proof in the mathematical or CMSC 208 sense

2



CMSC262 Project notes

done, what would you say?

This all does a few things. First of all, this kind of self-reflection seems to
make learning “stick” better; second, it’s structured in tandem with my AI
policies to make it possible to use and experiment with AI assistance but
also make it hard to just blindly hand off all the work to the AI.

And in order to make all of this work, I need you to hand in semi-frequently.
If you only hand in once or twice for work that is substantially beyond
the prep work, you will get zero points for the progress reports, “proof”,
and the code itself.

Generative AI

You have the option of not using a large-language-model (LLM) generative
AI system on the projects.

However, at least some use of generative AI will be permitted on each
project, and one of them will (probably) strongly encourage it.2 If you’re at
all interested in playing with the LLMs, I generally encourage it—now’s the
time—but there are a few constraints, laid out below. (Check each project
handout to see if there are any adjustments to these rules; this is still very
experimental and they may evolve a little.)

� You MUST NOT just paste in the project handout to get a final
program to hand in. (That would cause problems with the frequent
handin rule anyway.)

� In fact, you SHOULD NOT paste in text from the handout at all
(though you can paraphrase it when you’re writing your AI prompt)—
pasting someone else’s work into an LLM is unethical and a form of
copyright violation, since you’re giving stuff you don’t own to the AI
company (which they’ll then use in training their models).

� Any code that is entirely, largely, or even just partially AI-generated
MUST be marked off with comments that indicate what parts were
AI generated, which AI (e.g. ChatGPT, Gemini, etc) provided them,
and the prompts used, via the “share” link on the chat or edit session.
If your AI use is a single long chat window, a single valid share link in

2Still working out details on this. Stay tuned.

3



CMSC262 Project notes

the readme would be fine, but if your interactions are more targeted
you’ll want the share link in a code comment in the vicinity of the
code that was AI-influenced.

� Remember that you should be working one piece at a time, so your
AI requests SHOULD be sort of focused, and talking about how the
AI helped you SHOULD be part of your self-analysis in the progress
report.

Code submission

The program code you submit can in general be in any language that runs on
the lab systems (although Project 1 is restricted to C++, Java, or Python due
to the starter code). It’s a good idea to make sure the code compiles/runs
for each of the intermediate submissions, but it is vitally important that the
final submission [compiles and] runs.

If your code fails to compile or immediately crashes on all inputs, the
submitted code will receive a zero.

That means if you test your code and then “just add a quick comment” or
some other quick change... you should test it again before handing in.

Documentation

Your project must have documentation. It’s nice if it’s in a single file called
README.txt but if it’s spread across multiple files, just make sure I can find
it all. The things that absolutely must be in the documentation are:

� how to compile/make/setup your program (if relevant)

� how to run your program

� how to run your tests (if relevant)

with real, concrete things that can be typed on the command line (and
preferably, with those things on lines by themselves in the documentation,
for easy pasting).

4



CMSC262 Project notes

Once you’ve got documentation, though, that’s a good place to put anything
else you want me to know about. The required documentation, the progress
reports, and the “proof” can all go in the same file (but again, if they’re in
different files, just make sure I can find them).

Project followup

A short time after each project is due, and I’ve given you at least initial
feedback, I will give an in-class followup assessment on the project. The
point of the project is to learn some things; and the followup will then
assess if you actually did. Is it an exam? Kind of, but with a very practical
style and very narrow focus; my intent is that simply doing the project is
all you should need to do to “study for” the followup. I aim to calibrate
it so that if you legitimately work through the project, even with a bit of
human or AI help, you’ll get roughly the same grade on the followup as on
the submitted code (but if someone were to blindly submit code produced
by AI or another human, without understanding it, they’d have a hard time
on the followup).

The followups for Projects 1 and 3 will be standalone and take up only a
portion of the class day; the followups for Project 2 and 4 will be given
together with the midterm and final exam respectively.

This is a new, experimental idea this semester. I do appreciate feedback on
how you think it’s going (and if it goes off the rails I reserve the right to fix
it!)

Timeline

As a general rule, projects will be initially assigned on a Wednesday and
due three weeks later. (Project 1 is slightly shorter.) The prep work will be
due after the first week; they’re due by 8pm on the due date. (This gives
you a chance to ask questions in class and go back and fix things.)

The design work will generally be due on the following Monday, sometimes
alongside other homework. Like the homework, the design work is due at
the start of class, and should be brought with you to class.

The final handin for a project is due also by 8pm on the due date.

5



CMSC262 Project notes

Grading

Project grades are out of 150 total possible points.

The prep assignment is worth 10 points. You get 10 points if it [compiles,]
runs, and it does at least approximately what it’s supposed to. You get
5 points if it [compiles,] runs, and does something relevant to the task.
You get 0 points if it doesn’t compile, if it immediately crashes, or if I
can’t easily figure out how to make it work. (So, you should include some
documentation.) If your prep work gets a zero, work with me ASAP and you
can get back up to 5 of the 10 points. (The purpose is to get you started,
not to create a penalty!)

The design work is worth 10 points, and is graded for completion rather
than correctness. If you’re absent on the design day and haven’t made some
sort of advance arrangements, that will normally be a zero on the design
work.

The documentation is worth 10 points if there’s enough documentation
that I can easily see what to do with your code and what your code does.
The more I have to work to figure out what your code even does, the lower
this gets. If you have no documentation that I can find, you get zero points
for documentation.

The progress reports and “proof” are each worth 10 points, graded on
the same 10/7/4/0 scale as homework problems; submissions that are even
slightly beyond the level prep work are eligible for full credit on progress
reports and “proof”, as long as they’re clear and sensible for the project
work that was done. (For these points, you’re not evaluated on whether you
have made good design decisions (though I hope you do), but rather on how
you explain why you made the choices.)

The code submission is worth 40 project-specific points, and the project
followup is worth 60.

That adds up as follows:

6



CMSC262 Project notes

10 prep work
10 design work
10 documentation
10 progress reports
10 “proof”
40 submitted code
60 project followup

150

The goal will be to calibrate the rubrics so that if you get all of the first 50
points and do roughly as well on the followup as on your submitted code,
you’d be getting

� a low D for not making it past the checkpoint

� a middle C for a program that does some relevant thing

� a high B for a program that avoids major pitfalls and correctly solves
at least a simple version of the project problem

� a high A or full credit for a program that really gets into the concep-
tually interesting parts of the problem.

I’ll put rubric specifics in each project handout. Note that I’m not planning
to, in general, read your code or comment on it after you hand in—if you
want substantive feedback on your code, see me while you’re working on it.
I will assign scores based on reading your docs and running your code, but
if you’re serious about the self-evaluation in your “proof” file, you should
be able to predict your score within a few points based on the rubric I give
you in advance.

Each project will be worth 15% of the final grade.

Collaboration and citation

The projects in this course are collaborative, meaning you can (and should!)
discuss your ideas with other students, but the code you write needs to be
your own. See my collaboration policy for many examples of what is and
isn’t acceptable.

7

http://cs.longwood.edu/~dblaheta/collab.html#collab-programs


CMSC262 Project notes

The nature of this course and these projects also makes it more reasonable to
look on the internet for explanations, algorithms, and even code examples.
That’s great! But it also makes it more important than ever that you cite
your sources. Make sure you read my citation policy for when and how to
do this for programs.

Handing in

There is a handin command on the lab machines that you will use to hand
in all your work. If you use your own computer for development, transfer
your files to the lab machines, verify that they still work, and then hand
them in by typing

handin cmsc262 proj1 file1 file2 file3

or just

handin cmsc262 proj1 dirname/

or

handin cmsc262 proj1 .

to hand in an entire directory of files, replacing proj1 with the actual name
of the assignment.

Don’t forget to include your documentation, and make sure it’s easy for me
to find it. README.txt is a great name for a file of documentation that you
want me to be able to find.

Use the same project name for both the prep work and the final handin.

8

http://cs.longwood.edu/~dblaheta/collab.html#citation-programs

