CMSC242 Systems programming Blaheta

Lab 3
6 February 2023

This week’s lab is about practicing three things in C: file I/O with FILE*,
fork /wait, and signal handling.

Black box spec

Your program will take as its command line argument a partial filename,
to which the program will append .in and .out to generate the actual file-
names used for the file-based 1/0.! (You may print an error message, but
should not crash, if the provided partial filename is longer than 20 charac-
ters.) On startup, it will print a message “Welcome” to the screen, then
simultaneously interact with the user, and with the provided files.

For both the user interaction and the file interaction, the behaviour should
be that it repeatedly reads in a single positive integer, pauses to think for
one second, and then prints the number twice as large as that. If the input
is zero, the interaction ends (a “normal” end). If the input is negative, the
interaction prints an error message and ends (an “error” end).

If both interactions end normally, the original process prints a message to
that effect and exits. If either interaction ends with an error while the other
is still running, the still-running interaction immediately prints that the
other interaction had an error and then exits itself; and then the original
(controller, interactive) process prints a message that says which interac-
tion ended with an error, and exits. If the error happens after the other
interaction is done, the original process simply prints its error message and
exits.

Examples

Contents of testl.in:

3
42

190, if the argument were foo, the input would come from foo.in and the output
would go to foo.out.

CMSC242 Lab 3 6 February 2023

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out testl
Welcome

8

16

1000

2000

17

34

2401

4802

0

Both interactions normal

Contents of testl.out after execution:
6

84
14

Example 2

Contents of errex2.in:

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out errex?2
Welcome
123

CMSC242 Lab 3 6 February 2023

246

2

Error in other interaction

File interaction ended with error

(Note that the exact result/length of the interaction depends slightly on how
fast/slow the user types.) Contents of errex2.out after execution:

16
26
Error

Example 3

Contents of third.in:

S U1k W N -

Interaction, including initial command prompt and both input and output:

shannon -> ./a.out third

Welcome

25

50

-1123

Error

User interaction ended with error

Contents of third.out after execution:

2
4
Error in other interaction

(Note that the exact contents of the file depend slightly on how fast/slow
the user types.)

CMSC242 Lab 3 6 February 2023

Internal and other requirements

The two interactions, with the file and with the user, should each be their
own process separate from the original process (for a total of three processes).

In case it’s not clear, the one-second pause is a purely artificial requirement
to make this basically testable (otherwise the file-based interaction would
go much too fast). This can be done with the sleep function.

The indication from a child process as to whether it is ending normally or
with an error should be through its exit condition: 0 for normal, 1 for an
error. The original process will check for this condition to decide how to
respond to it.

The signal from the parent process to the other child after one child errors
should be a SIGTERM which is handled appropriately.

The actual work of read-pause-print should be done by a function that takes
FILE* parameters, so that it can work with actual files or with standard
input and output.

Use functions appropriately and observe principles of good design. Avoid
globals unless that’s the only way to transfer a value—in this lab you will
actually use one global variable (acting as a boolean) to communicate from
the signal handler. The handler will set the variable, and your running
interaction will check it to see if it needs to gracefully terminate.

As before, your handin should include a readme documenting how to com-
pile, run, and test your program. You may use a makefile; you should not
rely on compile. (If you wish to use unci, i.e. .u files, to test any functions
you write, you can use uncic directly to compile the .u files into .o files.
See me for details if you need help.)

Programs that do not compile will get few or zero points.
Use test cases to show me what works.

Duedate and handin

The lab is due Monday at 4pm.

Hand it in using the handin script:

handin cmsc242 lab3 dir_of_stuff/

CMSC242 Lab 3 6 February 2023

Rubric (tentative)

RUBRIC

General and design

3 compile, run, test instructions

2 fopen, fclose

1 good design, use of functions, variables, etc

11/2 checks return values in cases where something could go wrong
1 checks at least one of fork, fscanf, fopen
1/2 ...all of them

1/2 prints messages as specified

CL arguments and string handling

1 parameters of main

1 uses parameter of main

1 builds correct filenames per spec

1 ... with enough space allocated for largest valid filenames
1 . and protecting against buffer overflow

Function for I/O and math

1 puts at least some I/O in separate function(s)

1 uses function as specified (one function for both interactions)

1 ... with parameters as specified

2% fscanf, fprintf (original handout said 1)

1 read a number, print its double if positive

1 pause for one second

1 read/prints in non-infinite loop

1 ... that breaks on negative and/or zero input, and not on positives
Yool error and exit loop on negative

1/2 exit loop without error on zero

Basic process management

1 calls fork

1 . and stores or uses return value

1 clearly distinguishes child vs parent

1 two children per spec

1 calls wait

1 . and successfully gets status

1 calls wait for both forked children

1 . along all execution paths

1 child processes exit/return normally if normal

1 child processes exit/return nonzero if error

1 Parent distinguishes error from normal exit (WIFEXITED, WEXITSTATUS)
1 ...and correctly ids which child errored based on exit status, sometimes
1

S and prints normal/user error/file error, correctly in all cases
Signal sending and handling
1 On error, send SIGTERM to other child

1 On receipt of SIGTERM, react in any custom way

1 ... updates variable (global or equiv) to notify process to wrap up
1 ... print error message

1/2 ... closes files if any

