
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 11
6 April 2017

In this lab, you’ll write some code that builds, and then traverses, binary
trees. For simplicity, we’ll write trees that only hold characters.

Tree nodes

First, create a struct BinaryNode, capable of representing any of the nodes
in a binary tree. It will have three instance variables: a char, holding the
value that is stored at a particular node, and two pointers to BinaryNode

(one to the left child, if any, and one to the right child, if any).

By now you should be getting comfortable with writing your own structs
and classes, so I won’t recap those instructions here; look back at previous
labs to help you remember how.

Examples

In a notebook, draw out the following three trees:

• emptyTree, which is simply set to nullptr

• simple, which points to a node containing ’Q’ whose left child con-
tains ’X’ and right child contains ’Z’ (and no further descendants)

• tree5, pointing to a node that is the root of a small tree that contains
the five letters ’A’ through ’E’ and is relatively balanced (i.e. not just
a line)

Near each tree, write out the C++ expression you will use to actually con-
struct the corresponding tree. Start a unit test file whose fixture includes
at least those examples. Note that functions that work on a BinaryNode*

should, in general, work on emptyTree, since it’s a perfectly valid example
of a (empty) tree.



Functions

In a separate file BinaryTreeFunctions.cpp, write three functions prePrint,
postPrint, and inPrint, each of which takes a const BinaryNode* argu-
ment and an ostream& argument, and prints the given tree to the given
stream. The three functions should each recursively print the tree contents
(if any) to the stream, left-to-right, in the correct traversal order.

Write the functions’ prototypes in BinaryTreeFunctions.h, and include
that in your .u file. When you test the traversals, use an ostringstream

to check the output (as we did with Maze and Card).

Two other functions

Write and test the following recursive functions also:

• count counts the total number of nodes in the subtree rooted at a
given const BinaryNode* (including the node itself, if any).

• contains determines whether the subtree rooted at a given const

BinaryNode* includes a given character. (Note that it does not rely
on binary search order—simple, for instance, isn’t in that order.)

Handing in

Hand in your work electronically as lab11, by 4pm on Wednesday.

RUBRIC

1 Present in lab with preview stuff done
1 Readme with all required information
Class and examples
1 General struct definition, instance variables ♣
1 At least one BinaryNode correctly created ♣
1 Specified trees created
Function definitions and tests
1 All five required functions have correct test cases (fail ok) ♣
1 One recursive traversal is implemented correctly ♣
1 All three traversals are implemented correctly ♣
1 count ♣
1 contains ♣


