
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 10
30 March 2017

Today you’ll start development on a project that provides a (small) library
of classes to a potential user. Specifically, it will be a group of classes that
store elements without duplication—a set.

Sets

What is a set? Recall that its fundamental properties are that it

• contains elements,

• does not count or distinguish duplicates, and

• does not guarantee anything about their order.

That means that it can’t, for instance, retrieve an element at a particular
index, because indices imply order and sets don’t (promise to) preserve
order. Think about it, and in your notebook, write down the key methods
that a Set class will have to have. (If you’re a little stuck, you might refer
back to the UnsortedType definition in Chapter 3, which is not identical
but is quite similar.) There are three or four really important ones, plus a
few that would be more optional. Make sure to mark which ones would be
const.

Once you’re pretty confident about your list, write a file Set.h that encodes
this information in the form of valid C++ method headers. We would like
to make our Sets able to hold any type of element; at this point, it’s time
to start using templates for that. To make that happen, you just need to
precede the class header with

template <class Thing>

and then use Thing as the name of the type the Set would hold, whenever
you add a value or search for a value or anything like that. (Feel free to use
a different name than Thing.)

Because our Set class is meant to define an interface, we want to mark its
methods as “pure virtual”: we’ve mentioned this in class, but implementing



CMSC162 Lab 10 30 March 2017

it is just a matter of marking the method virtual and setting the body to
zero. That is, if you had written a method

int getSomeValue() const;

you would mark it pure virtual by writing

virtual int getSomeValue() const = 0;

Write a simple test file called test VectorSet.u that, for now, just #includes
your Set.h file and has an empty test suite. Compile that file to confirm
that your header has no errors.

Test cases

Now that we have a public interface, we can start planning our test cases. In
your notebook (not yet in the .u file), describe a few useful examples (which
will eventually become the test fixture). Then, write some sequences of
method calls, using those examples, that collectively verify that a Set would
correctly contain its elements, and does not count or distinguish duplicates.

Starting an implementation

Eventually, we’ll write Set implementations that run efficiently and mimic
the standard implementations, but before we worry about efficiency we have
to aim for correctness. Our first implementation will be VectorSet, and will
use the vector built in to C++ to store the data.1 Its main inefficiency will
be that when the user requests to add an element, it will have to check to
see that it’s not already in the set before adding it.

Edit a file VectorSet.h to start working on the class definition. The
VectorSet will declare itself to be a subclass of Set by using the following
class header:

template <class Thing>

class VectorSet : public Set<Thing>

1Note that a VectorSet object “has-a” vector, but “is-a” Set.

2



CMSC162 Lab 10 30 March 2017

(again, feel free to use a word other than Thing). Inside the class, you’ll
start by making a private instance variable that is a vector to hold the
data; and then for every pure virtual method in the Set definition, you’ll
write a stub method in the VectorSet definition (for now). Note: because
it is a templated class, all the code for VectorSet will go in the .h file.

Testing it

Now that you have the bare bones of an implementation, go ahead and
type the test cases you wrote out earlier into the file test VectorSet.u you
created earlier. For reasons I’ll explain tomorrow, I want you to use pointers
here; in your fixture, you’ll have lines that look like this:

Set<int>* example1 = new VectorSet<int>();

You’ll probably have more than one, and some of them could be sets of string
or whatever, and you should use names more descriptive than “example1”.
If you have something you want to do to some of them as part of setting up
your test fixture, remember that you can create a setup block with arbitrary
code. And since you’re using new to create the examples, you should also
write a teardown block that deletes them with statements like

delete example1;

Once you have your test file typed in, compile it and run it to confirm that
everything compiles. If you run your test now, most if not all of the tests
will still be failing—they’re still just stubs!

Actually writing it

Now go back and start filling in the stub methods. At this point you can
compile and test fairly frequently. The more frequently you do so, the easier
it will be to find bugs that you inadvertently introduce.

Several of the methods will be quite short, and can simply call an existing
method of vector! Don’t write more than you have to.

3



CMSC162 Lab 10 30 March 2017

Another implementation

Once you’ve finished VectorSet, write a different class called LazyVectorSet.
From a user perspective, the results it gives should be exactly the same (but
may take more or less time) as a VectorSet. The difference is that when the
user requests to add an element, it always justs adds it (using push back)
to the internal vector, even if this creates duplicates—making this a cheap
operation—but then it has to do a bit more work when it removes something.

Testing that one

The tests for LazyVectorSet should be identical to the ones for the other
set, right? Copy your existing test file to one called test LazyVectorSet.u

and replace all occurrences of VectorSet (which should only be at the top
of the fixture) with LazyVectorSet, and compile the test suite and run it.
Debug your LazyVectorSet and keep testing it until it passes as well.

Handing in

Hand your code in by 4pm Wednesday, as lab10 .

RUBRIC

1 Present in lab with preview stuff done
1 Appropriate readme
Set
1 Method headers
1/2 pure virtual
1/2 compiles ♣
VectorSet
1 Class definition as subclass ♣
1 Test suite tests correct behaviour (fail ok) ♣
1 Either add or contains is defined and correct
1 Add, contains, and remove are correct ♣
LazyVectorSet
1 Class definition, subclass, add is correct ♣
1 Remove is correct ♣

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

Extra

Produce a table of times and a group of graphs à la Lab 8 to show the
efficiency differences between VectorSet and LazyVectorSet.


