
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 8
16 March 2017

In this lab, you’ll see a bit of the experimental side of CS; in particular,
measuring empirically the amount of time taken by different algorithms and
data structures. Before you come to lab, you should read the instructions
below, take notes in your notebook, and write a short program that can
time things.

Timing things

If you were measuring how long something took in real life, you’d look at
the clock before it started, then again afterwards, and subtract the minutes
and seconds to find the result. That’s essentially what we’ll do here, except
that the clock we look at is the computer system’s internal clock, and we’ll
be counting in seconds and nanoseconds.

To get started, we’ll write a program that just times a simple loop. This
program will have four steps: check the time once, do something, check the
time again, and then compare the times.

Create the program file timing.cpp with the usual includes and setup, but
also

#include <ctime>

Inside the main function, type in the following two lines:

timespec first_check;

clock_gettime (CLOCK_MONOTONIC, &first_check);

This is a very C-ish idiom for making a system call: declare a variable
(which will hold a value; in this case a clock reading), then call a function
that takes the address of that variable, and afterwards the variable will have
been updated with the new value. The only other relevant item here is the
indication to use a monotonic clock—this is an indication to the system that
we’re using the clock as a stopwatch, rather than caring about the actual
clock time per se.



CMSC162 Lab 8 16 March 2017

I’ll refer to that pair of lines (declaring a timespec variable and then calling
clock gettime with it) as “checking the time”; use a fresh variable each
time so that you can compare them later. For now, add a second time check
to the program.

Between the two time checks, add a loop that runs 1000 times. It doesn’t
even have to do anything; we’re just killing time here.

Finally, after the second time check, you want to print the elapsed time
between the checks. Before proceeding, consider for a moment how you
would compute the amount of time between 3:46 and 5:10. Write out that
problem, and the computation you performed to answer it, in your notebook.
Take notes on the algorithm you used.

Now, I’ll tell you that similar to a wall clock time (with one “field” marking
hours and another marking seconds), timespec is a struct that contains a
field tv sec marking seconds and a field tv nsec marking nanoseconds.1

(There are 109 nanoseconds in a second.) Similar to the wall clock example,
the nanoseconds “wrap around” to zero when the seconds increment; so
even if you want a number of nanoseconds, you can’t ignore the seconds.
In your notebook, write out an expression (using first_check.tv_sec and
first_check.tv_nsec and their counterparts from your second time check)
that computes the total number of nanoseconds elapsed between the two
time checks.

Type that into your program, and print out this number to cout. Compile
and run your program.

See what happens if you vary the number of iterations in your “killing time”
loop.

Modify your program to define a function elapsed that computes and re-
turns the number of nanoseconds between one given timespec and another
given timespec; use that function in the body of the code to print the
number of nanoseconds between the two times.

1So, if you had a timespec value called first check, you would access the number
of seconds as first check.tv sec . Remember, structs are basically the same thing as
classes in C++.

2


