
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 6
23 February 2017

This week you’ll spend a bunch of time reading and playing with my code,
and continuing to learn your way around some of tools that will save you
some time and help you work with larger programs. By now, you should
have already created your lab6 directory and copied into it the files from
/home/shared/162-1/lab6/. Go to your lab6 directory now.

Making your life easier, part 1: Makefile

The compile command automates a lot, but it can still get a bit tedious,
especially when compiling involves multiple files and/or a given project in-
volves building multiple executable files. Now you’ll see a couple of tricks
to keep them more manageable.

First, type

make test_Leapfrog

and hit enter. You’ll see that it automatically runs compile a few times;
and if you ls the directory, you’ll see that instead of a.out it has created
an executable named test Leapfrog, which you can run by typing

./test_Leapfrog

and hitting enter. Now, just type

make

and hit enter—this told it to build all the available executables. To see the
rules that guided that process, edit the Makefile that I provided, and read
its contents.

In general, Makefile rules have three parts. First, the “target” file that the
rule creates; then, after a colon, the “dependency” files that are used in
the making of the target file; and third, on the next line, after a tab, the
command to run in order to generate the target. What makes makefiles truly

CMSC162 Lab 6 23 February 2017

fantastic is the dependency management—if you make a change to (only)
Leapfrog.cpp, when you run make it will see that it needs to regenerate
Leapfrog.o, and do so; and then, once Leapfrog.o is changed, it sees that
it also needs to regenerate all of the executable targets as well (and does so).
If you modify the .h file, it sees that everything depends on that (directly
or indirectly), and so it ends up rebuilding everything from scratch. If it
doesn’t need to rebuild something, it won’t: if you run make again, it should
say that nothing needs to be done.

A few other specifics:

• In the executable targets (test Leapfrog etc) you’ll notice the symbol
combination $ >. This says, “substitute the entire list of components
from the line above”. If you need to add a .o file to an executable,
now you can do it in a single place: the dependency line.

• Further down, there’s a series of dependency lists that are specific to
each individual .o file. These tell the make command that if any of
the other files change, it’ll have to recompile the component. Usually
a dependency list will include one .cpp file and one or more .h files.

Exit the editor, and then edit the file solvefrog.cpp to add a space or com-
ment or something else that changes the file but doesn’t affect the program,
then save and quit. If you run make again, it will detect the “changed” file,
but only the targets that depend on that file will be rebuilt.

Now, a quick reminder about how the leapfrog puzzle works.

The leapfrog puzzle

As you may have noticed, the files in this directory have frog-related names;
they are all related to a solitaire puzzle that works as follows. There are
seven cells filled by frogs facing to the left and right, initially as in this
diagram:

A frog can only be moved into the empty square, and only if the frog is
immediately in front of it or can get to it by leaping over a single other frog.

2

CMSC162 Lab 6 23 February 2017

For instance, if we choose the third from the end to step forward, the result
would be as follows:

and then the frog in front of that one could jump over him:

If you’re not careful, you can get yourself stuck:

But if you choose the moves in the correct order, you can make all the frogs
swap places before getting stuck:

In this directory, the Leapfrog class is designed to simulate the puzzle itself,
and the solvefrog function (and file) is designed to simulate a player of the
puzzle, i.e. someone trying to solve it.

You should already have read the files and taken some notes about them; in
particular, about how you thought the solvefrog function (in solvefrog.cpp)
works. Review that now before you go on to the next section. If you haven’t
already, try to run the different executables that you’ve built (particularly,
./play Leapfrog and ./show solvefrog) to understand how the puzzle
works.

Reading someone else’s code is an important programming skill. But simply
letting your eyes pass over the code isn’t really sufficient when it comes to
reading the code; you need to try it out and see what it does. One way to
do that is to add print statements (as we’ve already discussed). The next
section introduces a new tool that will let you try some other strategies.

3

CMSC162 Lab 6 23 February 2017

Making your life easier, part 2: debugger

Type gdb show solvefrog to start the debugger on that executable. Once
it has started, at the gdb prompt type

run

in order to run the program. It should run to completion, including output of
all the moves to solve the puzzle. You are still inside gdb when it completes,
and you can type run again; indeed, if you leave gdb open, and in a different
window recompile the program, you can type run again and it will load in
the recompiled program before running it.

Now type (still inside gdb)

break solvefrog.cpp:34

Its response tells you that it has created a “breakpoint” at the specified
location; now run the program and it will run until it reaches that line, and
then it will pause execution and let you inspect the state of things. For
instance, you can see the line of code that it’s paused on, and that posn is
a local variable here, so you can

print posn

and it’ll tell you something like “$1 = 4”—don’t worry about the $1, but
it’s telling you the value of the expression is 4. In fact, if you try it with
retval you should see something like “$2 = std::vector of length 1,

capacity 1 = {3}”because at this moment, retval is a vector containing
only the number 3 (which is the last move required to finish the puzzle). If
you look at this area of the code, you’ll find that another local variable is
current, representing the current Leapfrog board state; try printing that
too.

Another command you can run to inspect the state of the program is

backtrace

This shows you the current call stack, closely related to the box trace dia-
grams we’ve drawn whenever we talk about recursion; solvefrog appears

4

CMSC162 Lab 6 23 February 2017

many times because it’s a recursive function and we’re deep into it. Type
up and then print current again, and you’ll see an earlier version of the
board. You can use up and down to navigate the stack and show more of the
variable values in it (although, due to a quirky but long-standing conven-
tion, up and down go in exactly the opposite direction you’d expect them
to). You can at any point type list to show you a listing of the part of the
program adjacent to the current line.

But there’s more! Since the program is still running, you can type

next

to execute just one statement. Keep pressing Enter and the debugger will
repeat the previous command—this lets you go through the program step-
by-step and trace exactly what statements are being executed.

The three main tracing commands you’ll need to use are:

• next executes one line of code (the one that the debugger has printed
as the next available line to execute).

• step is like next except that if the line of code includes a function
call, it will only execute the first line of that function, and pause again
inside that function.

• continue tells the debugger to resume normal execution and keep
running until it hits another breakpoint, or crashes, or the program
ends normally.

And don’t forget to keep using print!

Comprehending the code

Right now, set another breakpoint at line 17, and run the program again.
Practice using the three tracing commands, and try to see how the algorithm
is executing (it’s usually helpful to have the code itself open in another win-
dow). My implementation of solvefrog is what’s called a “backtracking”
algorithm, meaning that it recursively tries one thing and, if that turns out
not to work, backs up and tries a different thing instead. Note the similari-
ties to other recursive algorithms we’ve seen, and use the debugger to help
you understand what’s going on with the call stack.

5

CMSC162 Lab 6 23 February 2017

In the space below, draw a box trace diagram of the call stack, at some
point when the stack is four function-calls deep. Remember that each stack
frame includes any local variables and parameters. (And definitely use the
debugger to help you figure out what you’ll need to draw!)

Spend some time digging deeper and looking at the Leapfrog class. In
particular, the makeMove method; it is short because it hands off a lot of work
to other code. What is it doing? For each part of makeMove that is “handed
off” to some other piece of code, write a short description (in English) of
what’s happening there. (Hint: make use of the method descriptions!)

Handing in

No electronic handin this week; but be sure to bring this lab handout with
you to class tomorrow, as we’ll be discussing your diagrams, and I’ll answer
questions/confirm guesses about the unfamiliar C++ features.

Credit: Frog image by Vectorportal.com

6

