
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 5
16 February 2017

In this lab, you’ll work a little with linked lists, and see how to use the unit
testing framework with pointer-based data. First, though...

Command line FOTD: grep

The grep command is a general search tool that lets you find occurrences
of some pattern in a whole batch of files. For instance, if you type

grep Node Node.h

you’ll get a listing of every line on which the word Node shows up in the file
Node.h (which is a lot!).

But grep is more powerful than that. Its first argument is what’s called a
“regular expression” or “regex”, and lets you search for some pretty com-
plicated things. You can get more information on this on your own, but a
few quick tricks:

• By enclosing the pattern in (single) quotes, you can search for strings
with spaces in them:

grep ’void set’ Node.h

• To match any amount of any text, use the “period asterisk” wildcard
(note that for filenames on the command line we use asterisk by itself,
but within a regular expression we need the period plus the asterisk):

grep ’ItemType.*item’ Node.h

• To match the beginning or end of the line, use caret and dollar-sign
respectively.

grep ’^Node’ Node.h

will give just those lines that start with Node.



CMSC162 Lab 5 16 February 2017

Vim FOTD: searching (and replacing)

From command mode, if you hit the forward slash key,1 it’s a little bit like
colon mode: the cursor moves to the bottom of the screen and awaits further
input. But what it’s waiting for now is a regular expression to search for.

Having just explained regexes in the context of grep, there’s not much more
to explain here; they work essentially the same way. After the initial slash,
you type a regex and hit enter, and Vim will find the next place in the file
that matches that regex, or if there are none it will tell you that.

Also inside command mode, the n command will repeat the previous search.
So pressing n repeatedly will cycle through all matches in a file. Using N

instead goes through matches in reverse order.

The n command together with the period command (which repeats the
previous command) is a workhorse combination: first, search for a pattern
and do something; then alternate n.n.n. until you’ve done your action
every place that pattern occurs. Try it in Node.h: Let’s say that instead of
ItemType as the stand-in name of the type this object contains, we prefer
Thing. Press / and type ItemType (and hit enter) to find some occurrence of
that word. Then, type the command cw to “change word” and type Thing

(and hit escape) to complete the change. Now press n to go to the next
occurrence, and press period to make the same change. Keep pressing n and
. until you’ve made that change throughout the file.

You can either save and quit (if you prefer Thing), or save without quitting
(using :q!), but other than that change, you should not need to further
modify the Node.h file for this lab.

Nodes and lists

First, create files NodeType.h and ItemType.h in your directory for this lab.
Nodes are described in section 3.4 in the book, and Items in section 3.2.
Make your items contain characters.

Then, create a file test NodeFunctions.u that, for now, just has a fixture
that declares and builds at least three linked list structures (not UnsortedTypes)—

1Having trouble remembering which is forward slash and which is backslash? If you
imagine them walking across the page from left to right, the forward slash is leaning
forward: / And the backslash is leaning backward: \

2



CMSC162 Lab 5 16 February 2017

one should have just a single element in it, and at least one of them should
be three elements or longer.

Remember as you’re doing this that the top part of the fixture should have
decl-and-init statements that look like

typename varname = initvalue;

and any additional setup goes in the setup block.

In the rest of this lab, you’ll be writing functions that operate on nodes—
again, not part of UnsortedType. Put them in a file called NodeFunctions.cpp

(and NodeFunctions.h), and test them in the .u file you’ve already made.

Implementing removeAllLessThan

In class, we worked out pseudocode for a hypothetical method of UnsortedType
called removeAllLessThan. Here we will implement it as a function, which
means we need to make a slight change to its header:

NodeType* removeAllLessThan (NodeType* start, ItemType value)

The pointer to the starting node has to be given explicitly, and the head
of the resulting list has to be returned explicitly (since we don’t have any
instance variables to work with).

Look at your notes from yesterday and the board photos to remind yourself
of our discussions about how to implement this.

Before typing in its implementation, though, make sure to declare it (in the
.h and test it in the .u file. Your test cases will probably include lines that
look something like this:

NodeType* result = removeAllLessThan (myExample, ItemType{’J’});

check (result) expect != nullptr;

check (result->info.value) expect == ’K’;

check (result->next) expect != nullptr;

check (result->next->info.value) expect == ’X’;

check (result->next->next) expect == nullptr;

or whatever, depending very much on how you declared ItemType and what
your example data looks like.

3



CMSC162 Lab 5 16 February 2017

countMatch

Now try writing another one, again making sure to test it, that behaves as
follows:

countMatch counts how many elements in the given linked list
are exactly equal to the value represented by the given item.

Plan your way through the function design—header and test cases, and you
may wish to create an additional example in your fixture to test this one.

When it comes to actually writing the function, there will again be rep-
etition, and in that repetition there are three things we need to account
for:

• We don’t find it
(the current node is nullptr)

• We find it
(the current node has it as its value)

• We have to keep looking
(continue on to the current node’s next)

As you write your function, keep all three in mind and be sure you don’t
forget to handle one!

You should now have at least three examples: one that represents no node
at all; one with a dead end node that contains just a single element; and
one that (indirectly) contains at least three elements (that is, it contains
one and points to further Nodes with the other two elements).

Compile and run your test suite to make sure you haven’t made any ty-
poes or other mistakes. Of course, since we still only have stub functions
for linkSearchRec and linkSearchIter, some of the tests should report
failures (if not, you need more or better test cases!).

Handing in

This is feeding into class Friday and an upcoming homework; do as much
as you can and make note of any questions you have, and bring those with
you to class, but no need to run handin this week.

4


