
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 2
Preview

26 January 2017

This week’s lab is all about class design. Before you come to lab, you should
read about the design process and do some of the early design steps for the
class you’ll be writing in the lab by writing out your design notes on the
worksheet I’ve provided (which you need to bring with you to lab).

Designing a data type

In the past you’ve talked about structs, and may be familiar with something
like the following process, but I’m going to formalise a design procedure
for classes that addresses first the data, and then the methods. Read the
following short description of each step, and then work through the next
section to step through a concrete example.

1. Describe the data.

This can be short, but it’s important: what is the coherent description
of this data type? Why are its pieces bundled together? This sentence
or two will go into a comment above the class declaration, so make it
helpful.

2. Give examples.

What does data of this type look like? Notice that we haven’t actually
written code yet, so these can just be on paper in whatever form is
most convenient to draw them. For a class representing fractions, one
example might be 2

3 . There should usually be more than one, although
there’s no reason to add more for their own sake; each additional
example should illustrate some meaningfully different case. Is 4

1 a
valid fraction? What about 3

6 (as distinct from 1
2)? Or −5

7? These
questions can’t always be answered in the absence of a purpose for
the data; whether unreduced fractions are allowed would depend very
much on the application they’re used in, for example.

3. Declare the class and instance variables, and



CMSC162 Lab 2 26 January 2017

4. Define the (basic) constructor(s).

These two arguably go together; although one (the instance variables)
has to do with internal representation and the other (the constructors)
have to do with its external face, at least one of the constructors tends
to be pretty straightforward, maybe even obvious, once you know what
the variables will be.

5. Encode the examples.

Once you have constructors defined, you are able to call them and
create actual instances of the data type. Don’t wait! You should
be able to construct every example you wrote out in step 2, and if
you can’t (or if it doesn’t compile), you can go back now and fix the
constructors before you get too deep into anything else. For now, you
can just construct them in main, although we’ll see a slightly different
way next week.

Trying it with Location

We’ll now step through the data design process to create a Location class.
Eventually, we’ll want it to be able to represent things like the location of the
start and finish in a rectangular-grid-based maze, as well as other locations
both inside and outside the maze. (Why outside? Well, you’ll need to be
able to ask questions like “is this location inside or outside the maze?”,
which won’t work very well if you can’t even represent locations outside the
maze!) Keep that context in mind as you work through this process—it will
make a difference in how you think about some of the pieces.

1. Describe the data.

Based on the above paragraph giving the context, write on the worksheet
a sentence or two describing what Location itself will be responsible for.
What pieces of data will it store? What are the data types for those pieces
of data? What is the job of a Location value?

2. Give examples.

Remember that you’re not writing code yet at this point (so no worries
about syntax or C++), but give a few examples of Location data. Note

2



CMSC162 Lab 2 26 January 2017

that it will be useful to be able to represent negative values (although they
are outside the edge of the maze). On the worksheet, write down at least a
few specific examples of Location data. Name each example. Make notes
about why they are significant and/or interesting.

The rest of the data design steps, as performed for Location, will be done
in lab.

Designing methods

Similar to the data design recipe, we can lay out a method design recipe that
will take us through a checklist of steps so we don’t skip or forget anything.

1. Describe the method.

As with the data design process, write out a short description of what
the method is to do. Use good verbs, and make good use of the
words “this” (referring to the current object) and “given” (referring
to parameters). Continuing the fraction example from earlier, one
fraction method might be reduce, which “modifies the numerator and
denominator of this fraction to be an equal fraction represented in
lowest terms.” Or plus, which “computes and returns the sum of this
fraction and a given other fraction.”

2. Declare the method (write its prototype/signature) and define a stub.

Based on the description, you should be able to write out the method’s
declaration in the .h file: this sets all of the parameter types and the
return type for the method. This is also a good time to decide whether
the method should be an accessor (const) or a mutator. (In the
fraction example, plus would be an accessor, but reduce wouldn’t.)

In the .cpp file, define the method to do nothing but immediately
return a dummy value like 0 or "" or false (or nothing at all if the
method returns void). This is a “stub” method.

3. Write test cases.

Write out method calls on existing examples that you added to the test
fixture earlier, and also write out what they are expected to return. (If
none of the values in the fixture are suitable to test what you need to
test, you can add more!)

3



CMSC162 Lab 2 26 January 2017

It is not accidental that this step comes before defining the method;
especially as the methods get more complicated, you will often be able
to state what the answer ought to be even before you figure out how
you will compute it. For example, 1

2 + 1
6 = 2

3 , but it might take a
moment to figure out how to do that computationally.

4. Compile and run tests.

At this point, you’ve written enough to make the compiler happy, so
you can compile, but because all you wrote was a stub, it won’t pass
the test. The test case thus simultaneously serves as documentation of
what the method should do, and a reminder that you’ve not finished
writing the method yet. At this point in the recipe you can take a
break or work on a different method, and know that you won’t forget
to come back to it later.

5. Step back, take inventory.

Look at the methods already defined for this class, the private instance
variables you have access to, and any of those values’ public methods.
Make sure you understand what data you can access and what already-
written methods you can call to help you solve the problem. (This step
becomes more important as the methods get more complex.) For the
fractions, the fact that reduce is available might help you in writing
plus!

6. Define the method.

Improve the definition of the method in the .cpp file from its original
stub into something that can pass the tests for that method.

7. Test!

Finally, compile the class and its test suite, and run it to make sure
the method you’ve written does what it’s supposed to.

Trying it with a Location method

This section will walk you through the process on a simple accessor method,
not because the full process is really needed for that task but to show you
how the recipe works. Specifically, you’ll write a method to provide public
read-only access to the (otherwise private) first coordinate of a location.

4



CMSC162 Lab 2 26 January 2017

1. Describe the method.

The best verb in this case is simply “returns”, because the method doesn’t
have to compute, build, find, modify, or do anything else complicated. The
class in question is Location, so the description should use the phrase “this
Location” to refer to the current object. On the worksheet, fill in the blank
in the following description as appropriate: “Returns the of this
Location.”

In the future, your method descriptions will get longer and more complex,
but they’ll pretty much always include the word “this” (to refer to the cur-
rent object being processed), and if they require any additional information,
you’ll use a word like “given” to indicate that.

2. Declare the method (write its prototype/signature) and
define a stub.

If we have a good method description, we can now answer a few questions
about this method. On the worksheet, answer these questions, based on the
description from step 1 above:

• What type of value will it be returning, if any?

• Does it have any “given” values, and if so, what types?

• Will it modify “this” value?

The first question tells us the return type; the second tells us about the
parameters; and the third tells us whether this method will be const or
not. (If the method won’t modify “this” value, it is a const method.)

In this case, looking at the method description, we know it’s returning a
coordinate that we know to be an int. The word “given” does not appear,
so it will not take any parameters. And since the action (“returns”) doesn’t
indicate any modification, this method can be declared const. So, on the
worksheet, write out a method header that looks something like:

int getX() const;

or

5



CMSC162 Lab 2 26 January 2017

int getRow() const;

Once you are typing these in (and, in the future, you can type them in
directly and not write them by hand on a worksheet, of course), you’ll
put this in the Location.h file, and precede it with a /* comment */ that
includes the method description from step 1.

Next, on the worksheet (and eventually in Location.cpp), write out a stub
definition for the method. The method header here in the definition is (as
usual) nearly the same as in the method declaration (without the semicolon
at the end); but for methods the name is preceded by a scoping operator to
indicate what class it is part of. It will look something like this (again, use
the name getRow if that’s what you used before):

int Location::getX() const

{

return 0;

}

3. Write test cases.

This isn’t a super-complicated method, so one test with two test cases should
more than suffice. As you saw in the previous lab if you read the tests I
provided, the Unci format has a fairly straightforward way to encode a test
plan; every expectation is written in the form

check (
Expression to evaluate

) expect
Expected result

;

For example, if you had an example location named loc34 whose x coordi-
nate was 3, you would write

check (loc34.getX()) expect == 3;

Expectations can take a few forms, including:

... expect == 3; // or some other exact value

... expect about 3.0 +- 0.001; // if the result is inexact

... expect true;

... expect false;

6



CMSC162 Lab 2 26 January 2017

Right now, on the worksheet, write out two expressions to evaluate that
make use of the method we’re designing, and their expected results. You
can and should make use of the examples from the data design (that’s why
we named them); and remember that you can add more!

The rest of the method design steps, as performed for this method, will be
done in lab. Now, finish the last part of the worksheet by performing these
steps for the isEqualTo method of Location as well.

7


