CMSC162 Intro to Algorithmic Design 11 Blaheta

Lab 1: Brushing off the cobwebs
19 January 2017

This week’s lab will work a bit differently from the later labs in the semester:
it will be a number of essentially separate problems to work on, to make sure
that everyone’s on the same page and to give you a chance to brush up on
the stuff you haven’t done for a month and a half.

Logging in, setting up, copying files

This section is not meant as a comprehensive tutorial on Linux usage (con-
sult your lab notes from 160 for more detail), but rather as a reminder of
some commands you haven’t used in a while. They should be enough to get
you started, but don’t hesitate to ask questions if you're stuck.

First, log in to cs.longwood.edu using PuTTY (or ssh, if you’re on Mac or
Linux).

You probably have a bunch of files from 160 still in your home directory;
you should keep those to refer to later, but probably out of the way. Try
this:

mkdir 160
mv lab* 160

That will move any files or directories whose names start with “lab” (such
as lab3, 1ab10) into a newly-created subdirectory named 160. Type 1s to
see what other files you have in your home directory, and maybe mv some of
them into the 160 directory as well.

Now set up this semester’s directory, and today’s work.

mkdir 162
cd 162
mkdir labl
cd labl

(On future logins, you won’t have to mkdir again, at least not for 162; and
from your home directory you can change directly to 162/1ab1 if you like.)

CMSC162 Lab 1: Brushing off the cobwebs 19 January 2017

If you type 1s at this point, the directory should be empty; if you type pwd
(“print working directory”) it should show you you're inside /home/yourlogin/162/1labl.

Now you’ll need to copy the starter files for this lab. They’re in /home/shared/162-1/1abl/,
and you should copy all the files there into your working directory for this

lab. Since you're currently in that directory, you can use the shortcut “.”

(a single dot), which always refers to the current working directory:

cp /home/shared/162-1/labl/* .

Type 1s again to check that the files are there.

The actual work before us

The core work of the week is just to solve these fourteen problems that you
previewed last night. Each has a description below and some setup and
testing information in the files you’ve just copied into your directory. Read
the readme file! Among other things, it gives instructions on how to use the
tests I've provided for you.

About the tests: For each problem, one or two tests are provided. If you
write code that passes them, that likely means you have the format correct,
but it’s no guarantee that your code is correct: the provided test cases are
not comprehensive and do not even try to test logical edge cases. You'll
have to test your own code to be sure that it works!

The functions

The handin for each of these should be one single .cpp file. It may contain
multiple functions (including, potentially, the answers to other problems)
but only the function named in the problem (and helpers it calls, if any)
will be graded. The file labfunctions.h contains the headers that your
functions must match to be considered correct. Each function has a provided
tester with just one or two cases; feel free to add your own test cases to the
tester files (which will not be handed in).

a. lastVowel finds and returns the last vowel in a given string. Vowels
are AEIOU (upper or lowercase). Returns > ! if there are no vowels
in the phrase.

CMSC162 Lab 1: Brushing off the cobwebs 19 January 2017

Hand in as labla using
handin cmsc162-1 labla yourfilename.cpp

b. numVowelsIncludingY counts the number of vowels in a given string.
In addition to AEIOU, Y is here considered a vowel, unless it is fol-
lowed by another vowel.

Hand in as labilb using
handin cmsc162-1 lablb yourfilename.cpp

c. lastNameFirst converts a given full name to be in the format last
name, followed by a comma and space, followed by the rest of the
name. Here, “last name” is determined to be everything after the first
space in the full name.

Hand in as lablc using
handin cmsc162-1 lablc yourfilename.cpp

d. getInitials returns the “initials” of a given phrase (the series of
“first” letters in each word, where words are separated by a single
space).

Hand in as labld using
handin cmsc162-1 labld yourfilename.cpp

e. bookPageEntry creates a “page entry” for a book with given title and
given author. The entry is a single string of length 70, with the name of
the book left justified and the author’s name right justified. Between
are dots separated by single spaces. The result may contain a double
space before the author’s name.

Hand in as lable using
handin cmsc162-1 lable yourfilename.cpp

f. isRightTriangle determines whether three given integers can be lengths
of sides of a right triangle. That is, if they are, in any order, a
Pythagorean Triple satisfying a® + b* = ¢2.

Hand in as lablf using

CMSC162 Lab 1: Brushing off the cobwebs 19 January 2017

handin cmsc162-1 lablf yourfilename.cpp

g. nearestFive takes a given whole number of cents and rounds to the
nearest nickel (so 42 rounds down to 40, 53 rounds up to 55, and so
on).

Hand in as lablg using
handin cmscl162-1 lablg yourfilename.cpp

h. piFromEuler computes the kth approximation of m according to Eu-
ler’s series

1 1 1 1 1)
6 - ﬁ—F?‘F?‘Fﬁ‘F"'ﬁ-? — T
The series approaches 72 as k gets bigger, but your code should be
computing 7 itself.

Hand in as labih using
handin cmsc162-1 lablh yourfilename.cpp

i. sum0fDigits computes the sum of all of the digits in the given positive
integer.

Hand in as labli using

handin cmsc162-1 labli yourfilename.cpp

The programs

The handin for each of these should be one single .cpp file. It may contain
multiple functions but should have exactly one main function; it should not
rely on any other files in the directory. Each program has provided one or
two test inputs and corresponding expected output files; feel free to write
your own additional test files (which will not be handed in).

If you test by hand (running the program without using the test files), you’ll
need to know that Ctrl-D is the indication that keyboard input is complete
(corresponding to the end of the file in the test-file-based input).

CMSC162 Lab 1: Brushing off the cobwebs 19 January 2017

j. numWordsUntilSTOP reads the input, word by word, until it sees the
sentinel value “STOP”, then prints the number of words it read and
a newline. Words are separated by whitespace. The count of words
should not include the occurrence of “STOP” (nor words that occur
after that, if any).

Hand in as 1ab1j using
handin cmsc162-1 lablj yourfilename.cpp

k. acrostic reads every line of the input and prints the first letter of
each, followed by a single newline character.

Hand in as labilk using
handin cmsc162-1 lablk yourfilename.cpp

l. checkPrimes reads positive integers until it finds a zero; for each,
it prints a single line containing either “PRIME” or “NOT PRIME” as
appropriate.

Hand in as labll using
handin cmsc162-1 labll yourfilename.cpp

m. gradesSummary reads grades until it runs out of input, then prints one
line with “Pass: ” and the number of grades that were passing (at
least 55), and another line with “Fail: ” and the number that were
failing (less than 55).

Hand in as lablm using
handin cmsc162-1 lablm yourfilename.cpp

n. multTable reads two positive integers, representing a width and then
a height, and prints a multiplication table with 1 at the upper left.
The width tells how many numbers should be printed across the table;
each number should be printed in two columns and be separated from
the next number by an additional space. (The lines should not end in
a space.) The height tells how many rows the table should have.

Hand in as labln using

handin cmsc162-1 labln yourfilename.cpp

CMSC162 Lab 1: Brushing off the cobwebs 19 January 2017

Grading rubric

Labs will generally be graded out of ten points, and each week, I plan to
provide a rubric for how I plan to award points. This gives you some idea
of where to focus your attention if you run short on time, and can act as a
checklist to make sure you haven’t forgotten anything.

This week:
RUBRIC

General

1 Present in lab

1 ... with pseudocode written down for at least four of them
1/, Handing in at least one at the end of the lab period

Ly Getting at least 12/14 correct by the Wednesday “due date”
Problems

1/2 Each

Handing in

This week is funny for several reasons; usually there will be a single handin
for the week (not fourteen separate ones), and a fixed due date, (usually 4pm
the following Wednesday) and that information will be noted/reminded in
a section at the end of the lab handout.

This week, the due date is indeed 4pm next Wednesday (the 25th), but it is
a soft deadline: there is a half point in the rubric tied to it, but other than
that it’s a rolling deadline. Hand each part in when you think it’s done, and
T’ll check them when I get a chance. The real deadline comes later: Until
you get 12 of the 14 problems correct, I will help you get them working but
I won’t grade anything else of yours. This is intended as a strong motivator
to get your basics in order right away, in the first week or two of the term.

