Blaheta

Syllabus tl;dr CMSC 162: Intro to algorithmic design II

Fall 2023

Meets:	MWF 10, Rotunda G54; and T11, Rotunda G56
Websites:	https://canvas.longwood.edu/courses/1309966
	http://cs.longwood.edu/courses/cmsc162
Professor:	Don Blaheta, Rotunda 334, blahetadp@longwood.edu
100% office hours:	Mondays 2–3:30pm; Wednesdays 1–2pm;
	Thursdays 1–2pm; Fridays 11am-noon

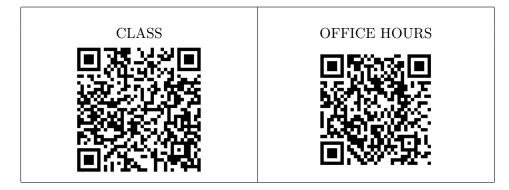
Textbook and resources

CS2 Software Design & Data Structures by the OpenDSA project.

https://opendsa-server.cs.vt.edu/ODSA/Books/CS2/html/

(Later, for a few readings, also its partner CS3 book)

The other main resource is provided by us: you'll be given an account on the department Linux machines (if you don't already have one), and you'll do your programming work there.


Graded work

- Engagement 5%
- Labs and homework 45%
- Presentation 10%
- Exams 20% each

Exam 1 is out Wednesday, 27 September, in-class portion on 29 September

Exam 2 is out Friday, 1 December, in-class portion 7 Dec @8am

Zoom attendance quick links

CMSC162

Syllabus tl;dr

Presentations and final project

In the last weeks of the term, each student will, with a partner or two, give a presentation about a data structure or algorithm as well as writing an implementation relevant to it. The presentation will be 12–15 minutes and needs to include:

- Accurate example diagrams
- Pseudocode and tracing using the example
- A demonstration of either correctness or efficiency

Both/all partners must participate in the presentation but may divide the time as they see fit. More details will come later in the term.

Grading scale

I tend to grade hard on individual assignments, but compensate for this in the final grades. The grading scale will be approximately as follows:

A-	[85, 90)	А	[90, 95)	A+	[95, 100]
B-	[70, 75)	В	[75, 80)	B+	[80, 85)
$\mathrm{C}-$	[55, 60)	С	[60, 65)	C+	[65, 70)
D-	[40, 45)	D	[45, 50)	D+	[50, 55)

While there will be no "curve" in the statistical sense, I may slightly adjust the scale at the end of the term if it turns out some of the assignments were too difficult. Final grades of A+ are recorded as an A in the grading system. Final grades below the minimum for D- are recorded as an F.

Note that *individual* grades recorded in Canvas should be accurate (and you should let me know if there's a data entry error!), but *averages* as computed by Canvas sometimes are not, if the averaging is complex or (especially) if an individual student has a special case scenario. The reference gradebook is my own spreadsheet, and while I will try to make Canvas reflect it (including averages) as well as I can, Canvas can't always handle it.

Special note re mastery lab: You must eventually complete the first lab satisfactorily in order to get higher than a D+ for the course. See details in the syllabus and in the Lab 1 handout.

Wk	M	Т	W	F
1	$egin{array}{c} { m August} \\ 21 \end{array}$	22	23	25
			\$1.1	$\$\$2.1{-}2.1.1.1$
	Introductions	Lab 1: Review and	What is a Data	Object-Oriented
	Policies	mastery	Structure?	Design
		Ū	Design and	Classes and methods
			specification	
				September
2	28 *	29	30	1
	$\S{2.2}$	—	—	\$\$1.2, 3.1
	.h files	Lab 2: Classes, I/O,	Class design cont'd	ADTs
	Templates	2D arrays		Lists
	UML			
3		5	6	8
	Labor Day	—	\$\$3.2 - 3.2.1	\$\$3.2.2, TBA
	no class	Lab 3: Function	Implementing an	append, remove
		design	ADT	Pointers
		Unit testing		"Smart" pointers
4	11	12	13	15
		_		\$\$7.1-7.2
	Pointers, cont'd	Lab 4: Pointers	Dynamic allocation	Recursion
			J	Fibonacci
				Linked nodes
5	18	19	20	22
Ŭ	§10.1			<u></u> §7.7
	Linked List	Lab 5: Linked node	Linked List	Tower of Hanoi
	Linnoù List	methods	implementation, ctd	
6	25	26	27	29 **
	TBA			
	Binary search	Lab 6: Reading code	Recursive	Exam 1
	The call stack	make, gdb	backtracking	
		Backtracking	Exam 1 TH out	
	October	0		
7	2	3	4	
	$\frac{-}{86.1}$	—	_	Fall Break
	Stacks and recursion	Lab 7: Using STL	Review allocation,	no class
	Array-based stacks	stack	references, memory	
	Exceptions	DUCCH	models	
	Exceptions		models	

* 28 August: Deadline to add/drop classes (5pm)

**** 29 September**: Deadline to elect pass/fail option (5pm)

Wk	M October	Т	W	F
8	9 — Classic ADTs The "big picture"	10 — Lab 8: Empirical efficiency	11 §§4.2, 4.5 Algorithmic efficiency Big-O notation	$\left[\begin{array}{c} {\rm no \ class} \end{array} \right]$
9	16 §10.2 Comparing implementations Linked Stacks Array List, Linked List revisited	17 — Lab 9: Interfaces and multiple implementations	18 Ch. 8 Quadratic sorts	20 CS3 §§8.9–8.10 Faster sorts: mergesort comparing alg's
10	23 CS3 §8.11 Faster sorts: quicksort	24 — Lab 10: Overloading operators	25 §§9.1.1, 9.2 Queues Linked Queue November	27 §§11.1–11.3 Trees Traversals
11	30 CS3 §7.8 Tree implementation	31 — Lab 11: Linked trees	1 * Tree implementation, ctd	3 §§11.4–11.4.2 Binary search trees
12	6 §11.4.3 BST remove	7 Lab 12: BST implementation	8 §11.4.4 BST analysis, balance, rotation	$\begin{array}{c} 10 \\ \mathrm{CS3~\S\$6.4,~7.12} \\ \mathrm{Maps/Dictionaries} \end{array}$
13	13 CS3 §§10.1–10.4 Hash tables	Symposium Day no class	15 CS3 §7.17 Heaps	17 §2.1 Inheritance is-a / has-a Hierarchies
14	20 — Model presentation Presentation debrief	21 — Lab: DT/Alg implementation	Thanksgiving no class	Thanksgiving no class
15	27	28	29	December 1
	Presentation work day	Lab: DT/Alg implementation Exam 2: Thu 7	Presentations	Presentations Exam 2 TH out

* 1 November: Deadline to withdraw from a class (5pm)