
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 6
Preview

26 September 2023

This week you’ll spend a bunch of time reading and playing with my code,
and continuing to learn your way around some of tools that will save you
some time and help you work with larger programs. To get started, create
your lab6 directory and copy into it all the files from /home/shared/162/lab6/.

Sometime before lab, read all the files and take notes (in your notebook) on
any C++ feature that we haven’t talked about before. Include filenames and
line numbers.

Then, spend at least a little while specifically looking at the solvefrog

function (in solvefrog.cpp) to figure out how it works. Write either a
2–3 sentence high-level description of how it works, or else a 2–3 sentence
description of which parts of the function you don’t yet understand (and
your best guess as to what they’re similar to).

Below is a description of the puzzle that this code is implementing.

The leapfrog puzzle

As you may have noticed, the files in this directory have frog-related names;
they are all related to a solitaire puzzle that works as follows. There are
seven cells filled by frogs facing to the left and right, initially as in this
diagram:

A frog can only be moved into the empty square, and only if the frog is
immediately in front of it or can get to it by leaping over a single other frog.
For instance, if we choose the third from the end to step forward, the result
would be as follows:



CMSC162 Lab 6 26 September 2023

and then the frog in front of that one could jump over him:

If you’re not careful, you can get yourself stuck:

But if you choose the moves in the correct order, you can make all the frogs
swap places before getting stuck:

In this directory, the Leapfrog class is designed to simulate the puzzle itself,
and the solvefrog function (and file) is designed to simulate a player of the
puzzle, i.e. someone trying to solve it.

Credit: Frog image by Vectorportal.com

2


