
CMSC162 Intro to Algorithmic Design II Blaheta

Lab 2
29 August 2023

v20230901-1830

This week’s lab is a bit thick, but that’s because it’s designed as a sort of
manual for creating classes. Save it! Until you absorb it all (which will
probably take at least a few weeks) you’ll want to refer back to it later.

To start off the lab period, I’ll begin most labs with a “feature of the day”
involving Vim or the command-line interface or both, to help you become a
power user of the system. Try not to spend more than 5–10 minutes on it
(because there’s other stuff to do!), but remember them and refer back to
them until the commands they teach are part of your muscle memory!

Vim FOTD: Cut and paste

Open a new file called dummy.txt in vim. Enter insert mode (by pressing
‘i’), type two lines of text, and then escape back to command mode.

Somewhere in the middle of the first line, press ‘x’ a few times. (This removes
characters.) Now press ‘p’ a few times.

Somewhere in the middle of the second line, press ‘x’ again. Now press ‘P’,
that is, Shift-P—notice what it did differently?

Go back to the first line, and type ‘dd’ (i.e. press the ‘d’ key twice). Press
‘p’ a few times.

Go to the new first line, and type ‘dd’ again. This time, press ‘P’ (Shift-P)
a few times.

What’s happening here is that every time you use a vim command to delete
something,1 it’s stored in a clipboard (as if you’d selected “Cut” in a GUI
word processor). Then, you can use one of the two paste commands to put
the text back—where it was, somewhere else, or any number of times.

There are two kinds of cut commands: those that remove some number of
characters and those that remove some number of lines. You’ve now seen
one of each (‘x’ deletes the character under the cursor, and ‘dd’ deletes the
line under the cursor). The paste commands differ in that ‘p’ means “paste
clipboard contents after this spot” while ‘P’ means “paste clipboard contents

1NB: this doesn’t include using the Backspace key while in Insert Mode.

CMSC162 Lab 2 29 August 2023

before this spot”. If the contents of the clipboard were character-based (like
if you hit ‘x’), then “this spot” means “the character under the cursor”, and
if the contents were line-based (like if you hit ‘dd’), then “this spot” means
“the line under the cursor”.

A few more occasionally-useful delete commands:
dw Delete to end of current “word” (char-based)
db Delete back to beginning of current “word” (char-based)
d$ Delete to end of current line (char-based)
d} Delete to next blank line (line-based)
7dd Delete seven lines (line-based) (similarly for other numbers)
dG Delete to end of file (line-based)

For each of these, replacing the d with a y makes Vim do a copy instead of
a cut. (The mnemonic for y is “yank”.) Beginning

of stuff that
you read in
the preview
←

Designing a data type

In the past you’ve talked about structs, and may be familiar with something
like the following process, but I’m going to formalise a design procedure
for classes that addresses first the data, and then the methods. Read the
following short description of each step, and then work through the next
section to step through a concrete example.

1. Describe the data.

This can be short, but it’s important: what is the coherent description
of this data type? Why are its pieces bundled together? This sentence
or two will go into a comment above the class declaration, so make it
helpful.

2. Give examples.

What does data of this type look like? Notice that we haven’t actually
written code yet, so these can just be on paper in whatever form is
most convenient to draw them. For a class representing fractions, one
example might be 2

3 . There should usually be more than one, although
there’s no reason to add more for their own sake; each additional
example should illustrate some meaningfully different case. Is 4

1 a
valid fraction? What about 3

6 (as distinct from 1
2)? Or −5

7? These
questions can’t always be answered in the absence of a purpose for

2

CMSC162 Lab 2 29 August 2023

the data; whether unreduced fractions are allowed would depend very
much on the application they’re used in, for example.

3. Declare the class and instance variables, and

4. Define the (basic) constructor(s).

These two arguably go together; although one (the instance variables)
has to do with internal representation and the other (the constructors)
have to do with its external face, at least one of the constructors tends
to be pretty straightforward, maybe even obvious, once you know what
the variables will be.

5. Encode the examples.

Once you have constructors defined, you are able to call them and
create actual instances of the data type. Don’t wait! You should
be able to construct every example you wrote out in step 2, and if
you can’t (or if it doesn’t compile), you can go back now and fix the
constructors before you get too deep into anything else.

Trying it with Location

We’ll now step through the data design process to create a Location class,
which is meant to represent Cartesian coordinates, points on a (discrete)
Cartesian grid. Its purpose will (eventually) be to represent locations of the
start and finish in a rectangular-grid-based maze, as well as other locations
both inside and outside the maze. Keep that context in mind as you work
through this process—it will make a difference in how you think about some
of the pieces.

1. Describe the data.

Based on the above paragraph giving the context, write on the worksheet
a sentence or two describing what Location itself will be responsible for.
What pieces of data will it store? What are the data types for those pieces
of data? What is the job of a Location value?

3

CMSC162 Lab 2 29 August 2023

2. Give examples.

Remember that you’re not writing code yet at this point (so no worries
about syntax or C++), but give a few examples of Location data. Note
that it will be useful to be able to represent negative values (although they
are outside the edge of the maze). On the worksheet, write down at least a
few specific examples of Location data. Name each example. Make notes
about why they are significant and/or interesting. New stuff

starting
here!
←3. Declare the class and instance variables

In your directory for this lab, edit a file named Location.h that will hold
the declarations for this class.

First, set up the header file with the ifndef structure you saw in the book.
At the very top of the file, type

#ifndef _LOCATION_H_

#define _LOCATION_H_

and at the end,

#endif

Every other thing you ever type in this file will go between those.

Next, type in the class skeleton, which looks like this:

class Location

{

private:

public:

};

Precede it with a /** comment */ containing the description you wrote in
step 1.

Finally, in the private section, add the instance variable declarations. That
is, revisit the examples you wrote in step 2: for each piece of data that makes
up a Location, declare a variable with the appropriate type and a reasonable
name.

4

CMSC162 Lab 2 29 August 2023

4. Define the (basic) constructor(s).

As we discussed in class, the constructor is how you make sure the instance
variables have values when an object is first created. In the .h file, we will
declare the constructor, and in the .cpp file, we will define the constructor.

Since you’re already in Location.h, we’ll start there. In the public part
of the class definition, add the declaration of the constructor, that is, its
header followed by a semicolon. In the ongoing fraction example, this line
would probably look like

Fraction (int num, int denom);

so for Location the equivalent would be

Location (int i, int j);

(For the rest of this handout, I will typically show examples based on the
fraction case study, and ask you to translate that yourself into what you need
to do for Location.) Note that at this point in the design, the parameter
list should include one parameter for every instance variable you declared
in step 3. (For future reference: if you need to declare something explicit

or const, or set default parameters, you would do that here as well.)

Save this file and exit the editor. Now edit a file Location.cpp to hold the
actual method definition. At the top of it, begin with the header:

#include "Location.h"

Then, type in the constructor definition. Remember that the job of a con-
structor is to give initial values to each of the fields of a struct or class. The
header in the definition, in the .cpp file, is almost the same as the header
we wrote in the .h file, but since it is not directly enclosed by the class
declaration, we need to indicate its scope by preceding the method name
with the scoping operator :: and the name of the class. In the fraction
example, that much would look like this:

Fraction::Fraction (int num, int denom)

To actually put the values into the instance variables, we have two options.
In class we used one, making the assignments in the body of the construc-
tor method; here I’ll demonstrate the use of initializers, which are more

5

CMSC162 Lab 2 29 August 2023

clearly and explicitly providing the initial value of each instance variable in
a comma-separated list before the constructor body (which then won’t have
to do anything at all). The fraction example would look like this:

Fraction::Fraction (int num, int denom) : numerator{num}, denominator{denom}

{

}

What will the analogous implementation be for Location?

If you’re not sure what to write, this would be a good point to consult with
the students sitting near you in the lab, if you haven’t already. Talk over
what you’re seeing here, and what you think it does.

5. Encode the examples.

To actually create the examples you wrote by hand in step 2, create a new
file test Location.u that has the following contents:

#include "Location.h"

test suite Location

{

fixture:

tests:

}

and after the fixture line, declare and init examples of a few Location

values. For instance, an example of a fraction, called threeFourths and
representing 3

4 , would be encoded as

Fraction threeFourths = Fraction{3,4};

Go ahead and encode your Location examples into the fixture section of
this file. Eventually, when we have methods to test, these examples will be
the data we’ll use; a “test fixture” is the term generally used to describe the
standard batch of data examples used in a particular test suite.

6

CMSC162 Lab 2 29 August 2023

(Sidebar: whenever you’re writing a .u file, you’re using a testing language
called Unci that I wrote for intro students using C++ to learn how to write
test cases and test suites. Our compile command knows about Unci files,
and when it is given a .u file it does what it needs to do to compile the
test—and when you compile an Unci test suite, you don’t need to define
your own main function.)

At this point, you have:

� declared the Location class in Location.h,

� defined the Location constructor in Location.cpp, and

� created examples of Locations in a test suite in test Location.u .

You can verify that you didn’t make any typoes by compiling these and
building a test program, by typing

compile Location.cpp test_Location.u

If there are problems, read the error messages and then try to fix what’s
wrong.

Note that if it compiles successfully, you can run ./a.out, but at the moment
it will just say

OK (0 tests)

because although we’ve created examples, we haven’t actually got any tests
to run yet! Beginning

of more
stuff that
you read in
the preview
←

Designing methods

Similar to the data design recipe, we can lay out a method design recipe that
will take us through a checklist of steps so we don’t skip or forget anything.

1. Describe the method.

As with the data design process, write out a short description of what
the method is to do. Use good verbs, and make good use of the

7

CMSC162 Lab 2 29 August 2023

words “this” (referring to the current object) and “given” (referring
to parameters). Continuing the fraction example from earlier, one
fraction method might be reduce, which “modifies the numerator and
denominator of this fraction to be an equal fraction represented in
lowest terms.” Or plus, which “computes and returns the sum of this
fraction and a given other fraction.”

2. Declare the method (write its prototype/signature) and define a stub.

Declare: Based on the description, you should be able to write out
the method’s declaration in the .h file: this sets all of the parameter
types and the return type for the method. This is also a good time
to decide whether the method should be an accessor (const) or a
mutator. (In the fraction example, plus would be an accessor, but
reduce wouldn’t.)

Stub: In the .cpp file, define the method to do nothing but immedi-
ately return a dummy value like 0 or "" or false (or nothing at all if
the method returns void). This is a “stub” method.

3. Write test cases.

Write out method calls on existing examples that you added to the test
fixture earlier, and also write out what they are expected to return. (If
none of the values in the fixture are suitable to test what you need to
test, you can add more!)

It is not accidental that this step comes before defining the method;
especially as the methods get more complicated, you will often be able
to state what the answer ought to be even before you figure out how
you will compute it. For example, 1

2 + 1
6 = 2

3 , but it might take a
moment to figure out how to do that computationally.

4. Compile and run tests.

At this point, you’ve written enough to make the compiler happy, so
you can compile, but because all you wrote was a stub, it won’t pass
the test. The test case thus simultaneously serves as documentation of
what the method should do, and a reminder that you’ve not finished
writing the method yet. At this point in the recipe you can take a
break or work on a different method, and know that you won’t forget
to come back to it later.

5. Step back, take inventory.

8

CMSC162 Lab 2 29 August 2023

Look at the methods already defined for this class, the private instance
variables you have access to, and any of those values’ public methods.
Make sure you understand what data you can access and what already-
written methods you can call to help you solve the problem. (This step
becomes more important as the methods get more complex.) For the
fractions, the fact that reduce is available might help you in writing
plus!

6. Define the method.

Improve the definition of the method in the .cpp file from its original
stub into something that can pass the tests for that method.

7. Test!

Finally, compile the class and its test suite, and run it to make sure
the method you’ve written does what it’s supposed to.

Trying it with a Location method

This section will walk you through the process on a simple accessor method,
not because the full process is really needed for that task but to show you
how the recipe works. Specifically, you’ll write a method to provide public
read-only access to the (otherwise private) first coordinate of a location.

1. Describe the method.

The best verb in this case is simply “returns”, because the method doesn’t
have to compute, build, find, modify, or do anything else complicated. The
class in question is Location, so the description should use the phrase “this
Location” to refer to the current object. On the worksheet, fill in the blank
in the following description as appropriate: “Returns the of this
Location.”

In the future, your method descriptions will get longer and more complex,
but they’ll pretty much always include the word “this” (to refer to the cur-
rent object being processed), and if they require any additional information,
you’ll use a word like “given” to indicate that.

9

CMSC162 Lab 2 29 August 2023

2. Declare the method (write its prototype/signature) and
define a stub.

If we have a good method description, we can now answer a few questions
about this method. On the worksheet, answer these questions, based on the
description from step 1 above:

� What type of value will it be returning, if any?

� Does it have any “given” values, and if so, what types?

� Will it modify “this” value?

The first question tells us the return type; the second tells us about the
parameters; and the third tells us whether this method will be const or
not. (If the method won’t modify “this” value, it is a const method.)

In this case, looking at the method description, we know it’s returning a
coordinate that we know to be an int. The word “given” does not appear,
so it will not take any parameters. And since the action (“returns”) doesn’t
indicate any modification, this method can be declared const. So, on the
worksheet, write out a method header. In the fractions example, you’d be
writing something like

int getNumerator() const;

What would be an appropriate name and header for the class we’re writing
now?

Once you are typing these in (and, in the future, you can type them in
directly and not write them by hand on a worksheet, of course), you’ll put
this in the Location.h file, and precede it with a /** comment */ that
includes the method description from step 1.

Next, on the worksheet (and eventually in Location.cpp), write out a stub
definition for the method. The method header here in the definition is (as
usual) nearly the same as in the method declaration (without the semicolon
at the end); but for methods the name is preceded by a scoping operator to
indicate what class it is part of. It will look something like this:

int Location::
name of method

() const

{

10

CMSC162 Lab 2 29 August 2023

return 0;

}

3. Write test cases.

This isn’t a super-complicated method, so one test with two test cases should
more than suffice. As you saw in the previous lab if you read the tests I
provided, the Unci format has a fairly straightforward way to encode a test
plan; every expectation is written in the form

check (
Expression to evaluate

) expect
Expected result

;

For example, in the fraction example, if you had an example named threeFourths
representing 3

4 , you might write

check (threeFourths.getNumerator()) expect == 3;

Expectations can take a few forms, including:

... expect == 3; // or some other exact value

... expect about 3.0 +- 0.001; // if the result is inexact

... expect true;

... expect false;

Right now, on the worksheet, write out two expressions to evaluate that
make use of the method we’re designing, and their expected results. You
can and should make use of the examples from the data design (that’s why
we named them); and remember that you can add more! New stuff

starting
here!
←

Edit the test Location.u file, and after the tests: line, add a test block.
Its name can be arbitrary but should generally correspond to the method
it’s testing. The corresponding block for the fraction example would be

test getNumeratorSimple

{

check (threeFourths.getNumerator()) expect == 3;

}

In your version, include the check-expect statements (at least two of them)
that you wrote out on the worksheet.

11

CMSC162 Lab 2 29 August 2023

4. Compile and run tests.

As before, you’ll compile by typing

compile Location.cpp test_Location.u

and hitting enter. (In fact, if you’re in the same window you typed that
before, you can hit ↑ a few times so you don’t have to keep retyping
that.)

When you run it, now, one test fails (because that method is just a stub!),
and the resulting message should helpfully tell you both what is expected
and what is actually being returned.

5. Step back, take inventory.

We’ll talk more about this in class later (and when we have more complex
data and methods to work with), but at this point we could note that a
method of Location has access to its instance variables (representing the
actual coordinates).

6. Define the method.

Edit the Location.cpp file and finish defining the method. The body of the
method is written just like the body of any other function, except that it
has access to all the member variables and methods of “this” Location.

In this case, change the return value of the method to the name of your first
instance variable.

7. Test!

Now that you’ve fully implemented the method, when you compile and run
the tests, the test that formerly failed should now pass. (If not, you’ve got
more work to do....)

12

CMSC162 Lab 2 29 August 2023

One last file to add

Going forward, every time you hand in a program or lab work electronically,
I will expect the submission to include easily-found documentation, probably
in the form of a file named README.txt. Such a file should contain:

� Your name

� What lab (or exam or whatever) it is

There will be just one file like this in each submission, but there might be
multiple runnable things as part of the task; for each runnable thing, you
should have instructions on

� How to compile it

� How to test it (if this is appropriate)

� How to run it/use it (if this is appropriate)

Ideally, these instructions are set up so that the actual literal exact thing to
type at the command line is on a line by itself (or lines, if it takes multiple
commands). For instance:

To compile and run the test cases:

compile Location.cpp test_Location.u

./a.out

By isolating these things on their own lines, it is really easy to triple-click
them (to select and copy them) and then paste them into a window with an
open command line. (See my readme from Lab 1 for some examples of this
format.)

These files are human-oriented documentation and can be somewhat free-
form, and are a good place to put any other information you think I need to
know about your work (or even notes to your future self for if you ever look
at this code again). You can vary the format a little bit when that suits the
content, but I always want a readme and I always want it to contain at least
this stuff. Add a readme file to your directory now, before writing the rest
of the methods.

13

CMSC162 Lab 2 29 August 2023

Some more methods to write

All these are methods appropriate to Location that will be useful at some
point in writing our maze solver. Follow the design process for each one
(I’ve already given you the descriptions).

� An accessor for the other coordinate

� toStringmakes a string with the text representation of this Location
in the form “(2,7)”.

� isEqualTo determines whether this Location is the same as a given
other Location.

� east computes and constructs the Location immediately to the east
of this Location. (Note the verbs used here: it does not modify this
Location!)

Handing in

This week there are quite a few files to hand in, but I want a single handin
with all of them. You should probably put all of this into its own directory;
if it were called location lab you would go to the directory that contains
location lab and type

handin cmsc162 lab2 location_lab

Of course, if you called the directory something other than location lab,
type that instead! And if you run it from inside the directory with all the
files in it, you can just type

handin cmsc162 lab2 .

(don’t forget the dot at the end). (You can resubmit as many times as you
want, but each submission should have all the files required.)

This lab is due at 4pm next Wednesday. I expect you’ll be mostly done by was Monday
the time our class meets that day, but this later time gives you a chance to
make edits if you have any last-minute questions. Note that Lab 3 will make ← added

notesome use of Location, so try to at least have it in a state that compiles as
of Tuesday morning, even if you’re still not done with all the later methods.

14

CMSC162 Lab 2 29 August 2023

Rubric (tentative)

RUBRIC

General
1 Preview stuff done before lab
1 Readme with required stuff
Data recipe (Location)
1 Description in comment preceding class definition
1 Examples of Location values in test file ♣
1 Full class definition (including at least constructor) ♣
Methods
1 Header, test, implementation for both get methods ♣
1 Correct header, good test cases, valid stub for isEqualTo ♣
1 Correct header, good test cases, valid stub for toString ♣
1 Correct header, good test cases, valid stub for east ♣
1 Full correct method definitions ♣

♣ indicates point is only available if the code compiles, with at least a stub
for the relevant method(s).

15

