CMSC162 Intro to Algorithmic Design 11 Blaheta

Lab 2

Preview
28 August 2023

This week’s lab is all about class design. Before you come to lab, you should
read about the design process (ie this PDF) and do some of the early design
steps for the class you’ll be writing in the lab by writing out your design
notes on the worksheet I've provided (which you need to have with you
during lab). (You can recreate the worksheet in your notebook if you lose
it and don’t want to print it out again.)

Designing a data type

In the past you've talked about structs, and may be familiar with something
like the following process, but I'm going to formalise a design procedure
for classes that addresses first the data, and then the methods. Read the
following short description of each step, and then work through the next
section to step through a concrete example.

1. Describe the data.

This can be short, but it’s important: what is the coherent description
of this data type? Why are its pieces bundled together? This sentence
or two will go into a comment above the class declaration, so make it
helpful.

2. Give examples.

What does data of this type look like? Notice that we haven’t actually
written code yet, so these can just be on paper in whatever form is
most convenient to draw them. For a class representing fractions, one
example might be % There should usually be more than one, although
there’s no reason to add more for their own sake; each additional
example should illustrate some meaningfully different case. Is % a
valid fraction? What about 2 (as distinct from 3)? Or —2? These
questions can’t always be answered in the absence of a purpose for
the data; whether unreduced fractions are allowed would depend very
much on the application they’re used in, for example.

CMSC162 Lab 2 28 August 2023

3. Declare the class and instance variables, and

4. Define the (basic) constructor(s).

These two arguably go together; although one (the instance variables)
has to do with internal representation and the other (the constructors)
have to do with its external face, at least one of the constructors tends
to be pretty straightforward, maybe even obvious, once you know what
the variables will be.

5. Encode the examples.

Once you have constructors defined, you are able to call them and
create actual instances of the data type. Don’t wait! You should
be able to construct every example you wrote out in step 2, and if
you can’t (or if it doesn’t compile), you can go back now and fix the
constructors before you get too deep into anything else.

Trying it with Location

We'll now step through the data design process to create a Location class,
which is meant to represent Cartesian coordinates, points on a (discrete)
Cartesian grid. Its purpose will (eventually) be to represent locations of the
start and finish in a rectangular-grid-based maze, as well as other locations
both inside and outside the maze. Keep that context in mind as you work
through this process—it will make a difference in how you think about some
of the pieces.

1. Describe the data.

Based on the above paragraph giving the context, write on the worksheet
a sentence or two describing what Location itself will be responsible for.
What pieces of data will it store? What are the data types for those pieces
of data? What is the job of a Location value?

2. Give examples.

Remember that you're not writing code yet at this point (so no worries
about syntax or C++), but give a few examples of Location data. Note
that it will be useful to be able to represent negative values (although they

CMSC162 Lab 2 28 August 2023

are outside the edge of the maze). On the worksheet, write down at least a
few specific examples of Location data. Name each example. Make notes
about why they are significant and/or interesting.

The rest of the data design steps, as performed for Location, will be done
in lab.

Designing methods

Similar to the data design recipe, we can lay out a method design recipe that
will take us through a checklist of steps so we don’t skip or forget anything.

1. Describe the method.

As with the data design process, write out a short description of what
the method is to do. Use good verbs, and make good use of the
words “this” (referring to the current object) and “given” (referring
to parameters). Continuing the fraction example from earlier, one
fraction method might be reduce, which “modifies the numerator and
denominator of this fraction to be an equal fraction represented in
lowest terms.” Or plus, which “computes and returns the sum of this
fraction and a given other fraction.”

2. Declare the method (write its prototype/signature) and define a stub.

Declare: Based on the description, you should be able to write out
the method’s declaration in the .h file: this sets all of the parameter
types and the return type for the method. This is also a good time
to decide whether the method should be an accessor (const) or a
mutator. (In the fraction example, plus would be an accessor, but
reduce wouldn’t.)

Stub: In the .cpp file, define the method to do nothing but immedi-
ately return a dummy value like 0 or "" or false (or nothing at all if
the method returns void). This is a “stub” method.

3. Write test cases.

Write out method calls on existing examples that you added to the test
fixture earlier, and also write out what they are expected to return. (If
none of the values in the fixture are suitable to test what you need to
test, you can add more!)

CMSC162 Lab 2 28 August 2023

It is not accidental that this step comes before defining the method;
especially as the methods get more complicated, you will often be able
to state what the answer ought to be even before you figure out how
you will compute it. For example, % + % = %, but it might take a
moment to figure out how to do that computationally.

4. Compile and run tests.

At this point, you’'ve written enough to make the compiler happy, so
you can compile, but because all you wrote was a stub, it won’t pass
the test. The test case thus simultaneously serves as documentation of
what the method should do, and a reminder that you’ve not finished
writing the method yet. At this point in the recipe you can take a
break or work on a different method, and know that you won’t forget
to come back to it later.

5. Step back, take inventory.

Look at the methods already defined for this class, the private instance
variables you have access to, and any of those values’ public methods.
Make sure you understand what data you can access and what already-
written methods you can call to help you solve the problem. (This step
becomes more important as the methods get more complex.) For the
fractions, the fact that reduce is available might help you in writing
plus!

6. Define the method.
Improve the definition of the method in the .cpp file from its original
stub into something that can pass the tests for that method.

7. Test!

Finally, compile the class and its test suite, and run it to make sure
the method you’ve written does what it’s supposed to.

Trying it with a Location method

This section will walk you through the process on a simple accessor method,
not because the full process is really needed for that task but to show you
how the recipe works. Specifically, you’ll write a method to provide public
read-only access to the (otherwise private) first coordinate of a location.

CMSC162 Lab 2 28 August 2023

1. Describe the method.

The best verb in this case is simply “returns”, because the method doesn’t
have to compute, build, find, modify, or do anything else complicated. The
class in question is Location, so the description should use the phrase “this
Location” to refer to the current object. On the worksheet, fill in the blank
in the following description as appropriate: “Returns the of this
Location.”

In the future, your method descriptions will get longer and more complex,
but they’ll pretty much always include the word “this” (to refer to the cur-
rent object being processed), and if they require any additional information,
you’ll use a word like “given” to indicate that.

2. Declare the method (write its prototype/signature) and
define a stub.

If we have a good method description, we can now answer a few questions
about this method. On the worksheet, answer these questions, based on the
description from step 1 above:

e What type of value will it be returning, if any?
e Does it have any “given” values, and if so, what types?

e Will it modify “this” value?

The first question tells us the return type; the second tells us about the
parameters; and the third tells us whether this method will be const or
not. (If the method won’t modify “this” value, it is a const method.)

In this case, looking at the method description, we know it’s returning a
coordinate that we know to be an int. The word “given” does not appear,
so it will not take any parameters. And since the action (“returns”) doesn’t
indicate any modification, this method can be declared const. So, on the
worksheet, write out a method header. In the fractions example, you'd be
writing something like

int getNumerator() const;

What would be an appropriate name and header for the class we're writing
now?

CMSC162 Lab 2 28 August 2023

Once you are typing these in (and, in the future, you can type them in
directly and not write them by hand on a worksheet, of course), you’ll put
this in the Location.h file, and precede it with a /** comment */ that
includes the method description from step 1.

Next, on the worksheet (and eventually in Location.cpp), write out a stub
definition for the method. The method header here in the definition is (as
usual) nearly the same as in the method declaration (without the semicolon
at the end); but for methods the name is preceded by a scoping operator to
indicate what class it is part of. It will look something like this:

int Location:: () comnst
{ NAME OF METHOD
return O;

3. Write test cases.

This isn’t a super-complicated method, so one test with two test cases should
more than suffice. As you saw in the previous lab if you read the tests I
provided, the Unci format has a fairly straightforward way to encode a test
plan; every expectation is written in the form

check () expect
EXPRESSION TO EVALUATE EXPECTED RESULT

For example, in the fraction example, if you had an example named threeFourths
representing %, you might write

check (threeFourths.getNumerator()) expect == 3;
Expectations can take a few forms, including:
. expect == 3; // or some other exact value
. expect about 3.0 +- 0.001; // if the result is inexact

. expect true;
. expect false;

CMSC162 Lab 2 28 August 2023

Right now, on the worksheet, write out two expressions to evaluate that
make use of the method we're designing, and their expected results. You
can and should make use of the examples from the data design (that’s why
we named them); and remember that you can add more!

The rest of the method design steps, as performed for this method, will be
done in lab. Now, finish the last part of the worksheet by performing these
steps for the isEqualTo method of Location as well.

