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It is nice to be able to detect that a transmission error occurred.  It would be nicer to be 

able to find and correct the error.  There are several schemes to do this.  A standard one is 

calling Hamming code. 

 

A Hamming code is a combination of 0s and 1s, but not all combinations of 0s and 1s are 

valid codes.  The Hamming distance between two binary numbers of the same length is 

the number of positions in the numbers that have different values.  For example, the 

Hamming distance between  1101  and  1000  is  1, since they differ in only one position.  

The Hamming distance between  1101  and  1011  is 2, since they differ in two positions. 

 

Consider a Hamming code of length 1.  That is, there are only two possible codes,  0  and  

1.  If both represent valid codes, there is no way to detect a transmission error.  If an error 

occurs, than a  0  become a  1, or a  1  becomes a  0, and both are valid codes.  All 

possible received words are valid, and no detection or correction is possible. 

 

Now suppose we use a two bit code.  This provides four possible values:  00, 10, 10, and  

11.  Suppose we specify that only  00  and  11  are valid codes.  If  01  or  10  are 

received, we know an error has occurred.  That is, we have error detection capability. 

 

Here’s a graphical way to look at what we have so far.   

 

One bit codes:  0  and  1  are possible codes; both are valid.  Put the possible codes at the 

ends of a line segment. 

 

 0                  1 

 

Two bit codes:  00, 01, 10, 11  are possible codes;  00  and  11  are valid.  Put the possible 

codes at the corners of a rectangle. 

 

      00                                         10 

 

 

 

 

 

       01                                        11 

 

Notice that we arranged the possible codes so that the Hamming distance between any 

two adjacent vertices is  1, and the Hamming distance between any two non-adjacent 

vertices is  2. 



 

This provides error detection, but problems remain. 

 We can’t detect which bit is wrong if we detect an error.  For example, suppose 

we receive  01.  It is not a legal code, so an error has occurred.  But we don’t 

know whether it came from  00 (with the second bit changed to  1) or from  11 

(with the first bit changed to  0). 

 A double error would not be detected at all.  If we receive  11, it could have 

originally been  00  or  11. 

 

Next, suppose we use three bit values.  There are eight possible values, which can be 

represented as vertices of a cube.  As before, label the vertices so that any two adjacent 

vertices differ in only one position. 

 

 
Now there are Hamming distances of  1, 2, and  3.  For instance,  000  and  111  differ in 

three positions.  So do the pairs  100 , 011; 101 , 010; and  110 , 001.  Choose a pair of 

codes that are at a Hamming distance of   3  apart to be the valid codes.  All others 

represent errors.   

 

Suppose we choose  000  and  111  as the valid codes.  A single error in transmission 

produces a word that is a distance of  1  from the correct value and a distance of  2  from 

the other value.  For example, suppose  001  is received.  It is invalid, so an error 

occurred.  What could the correct word have been?  It could not have been  111, because 

that would have been two errors.  The values  001 and  111  differ in two places.  

Therefore, it must have been  000.  We have detected and corrected the error! 

 

Similarly, suppose  011  is received.  Could the original number have been  000?  No, 

because that would have been two errors.  So the original value must have been  111. 

 



Indeed, if an invalid code is received, and we assume only one transmission error, we can 

correct the error by substituting the closest legal code word from the diagram.  The 

invalid codes  001, 010  and  100  correct to  000; while  011, 101, and  110  correct to 

111. 

 

This example illustrates a majority logic code.  Triple redundancy is used to encode the 

data (three bits are used to encode a single data bit), and the data decoded is that 

corresponding to two of the three received symbols that are alike, if not all three are the 

same. 

 

This error correcting code works well for single transmission errors, but there are still 

some problems. 

 If a double error occurs, it will be corrected erroneously!  For example, suppose  

011  is received.  It will be corrected to  111.  But if the original was  000, and 

the second and third bits got switched in transmission, the correction would be 

wrong. 

 A triple error would not be detected at all. 

 

Here are some general results. 

 If the minimum distance between any two valid codes is  1, no detection or 

correction is possible. 

 If the minimum distance between any two valid codes is  2, detection of single 

errors is possible, but not correction.  A double error will not be detected. 

 If the minimum distance between any two valid codes is  3, detection and 

correction of single errors is possible.  A double error will be corrected 

erroneously, and a triple error will not be detected. 

 

Notice the phrase, “minimum error.”  We do not require that all valid codes be the same 

distance apart, but only that no two valid codes be closer than the minimum distance.  

Also note that by providing sufficient minimum distance between valid codes, any 

desired number of errors can be corrected.  Of course, this would require a lot of extra 

bits.  If we allowed more possible codes to be legal, then we could send more data, but 

we might lose some error detection or correction capability. 

 

For example, suppose we are using three bit codes, and the legal codes are  001, 010, 100, 

and  111.  Can we detect errors?  Can we correct them? 

 



 
Since the Hamming distance between any two legal codes is  2, we can detect single 

errors in transmission.   We cannot correct them, however.  For example, suppose  000  

arrives.  It is incorrect, but we don’t know whether it came from  010  or  100 . 

 

Notice in this example that the legal codes all have odd parity.  We could think of it this 

way:  We are using two bit codes with a parity bit. 

 

 Code Code + parity 

 

   00      001 

   01      010 

   10      100 

   11      111 

 

If a transmission arrives with even parity, we know an error has occurred.  This certainly 

makes it easy to detect errors. 

 

There are some general principles here. 

 For single bit error detection, we need add only one bit to the standard word size.  

For instance, if we are using  16  bits words, adding a  17
th

  bit will give single bit 

error detection.  Adding the extra bit guarantees that the minimum distance 

between any two valid words will be  2.  The extra bit can be considered as a 

parity bit, and setting it to even or odd parity achieves the Hamming distance of  2  

between any two valid words.  That is, if we are using odd parity, and two words 

have odd parity, there is a distance of at least  2  between them. 

 Each time we increase the Hamming distance, we pick up an increased ability to 

detect or correct errors. 



 

Min distance         Detect        Correct 

      2 Single errors None 

      3 Single errors Single errors 

      4 Single, double Single 

      5 Single, double Single, double 

  …….. …… …… 

    2n Single, double, …, n Single, double, …, n-1 

   2n+1 Single, double, …, n Single, double, …, n 

 

For example, if we add five bits, giving a minimum Hamming distance of  6, we can 

detect single, double, and triple errors, and correct single and double ones. 

 

Here’s an example of an error-correcting Hamming code. 

 

 Symbol  Code 

 

      A  110100 

      B  111111 

      C  000111 

      D  001100 

      E  010010 

      F  011001 

      G  100001 

      H  101010 

 

You can verify that the minimum distance between any two legal codes is  3. 

 

If a single bit is modified in transmission, the result will not be a legal pattern.  Moreover, 

we can correct the transmission error by figuring out the original bit pattern.  The 

incorrect pattern will be a Hamming distance of  1  from its original form, but at least  2  

from any of the other legal codes.  For example, suppose we receive the code  010100 .  

This is not one of the eight legal codes, so it is incorrect.  Calculate its distance from each 

of the legal codes.  In the table, the different bits are highlighted. 

 

 Symbol  Code  Received Distance 

 

      A  110100 010100          1 

      B  111111 010100      4 

      C  000111 010100      3 

      D  001100 010100      2 

      E  010010 010100      2 

      F  011001 010100      3 

      G  100001 010100        4 

      H  101010 010100         5 

 



Since the first legal code is the only code to differ from the received pattern in only one 

place, the original code must have been  ‘A’. 

 

Suppose the following string of codes was received.  What was the original message? 

 

 Received string: 010100 100001 010110 

 

We already figured that the first pattern is incorrect, and we corrected it to the code for   

‘A’.  The second pattern, 100001, is a valid code, the pattern for  ‘G’.  The third pattern, 

010110, is incorrect.  Looking at the table, it differs in exactly one position from the code 

for  ‘E’.  Therefore, the corrected message is 

 

 Original message:  AGE 

 

How do we decide on the legal bit patterns for a Hamming code?  There are several 

schemes, and we will go through one here.  It uses parity bits to provide single bit error 

detection and correction.  Even or odd parity can be used; we will use odd parity in the 

example. 

 

Suppose that we want to be able to transmit three data bits and to be able to detect and 

correct single bit errors in transmission.  In other words, we want to be able to reliably 

transmit any of the six data strings  000, 001, 010, 100, 101, 110, and 111.  Let us devise 

a Hamming code to accomplish this. 

 

Use a six bit code, with bits 3, 5 and 6 holding the data bits. 

 

 ___  ___  _d_  ___  _d_  _d_  d  denotes a data bit 
                      1            2            3            4          5            6  These numbers are bit positions 

 

Place  0  or  1  in bit position  1  so that positions  1, 3, and  5  are in odd parity. 

Place  0  or  1  in bit position  2  so that positions  2, 3, and  6  are in odd parity. 

Place  0  or  1  in bit position  4  so that positions  4, 5, and  6  are in odd partity. 

 

Data  000:  ___  ___  _0_  ___  _0_  _0_ 
                                1            2            3            4          5            6 

 

Bits  3  and  5  are  00, so set bit  1  to  1  for odd parity. 

Bits  3  and  6  are  00, so set bit  2  to  1  for odd parity. 

Bits  5  and  6  are  00, so set bit  4  to  1  for odd parity. 

The resulting Hamming code string is  110100 

 

Data 001:   ___  ___  _0_  ___  _0_  _1_ 
                                1            2            3            4          5            6 

 

 Bits  3  and  5  are  00, so set bit  1  to  1  for odd parity. 

 Bits  3  and  6  are  01, so set bit  2  to  0  for odd parity. 

 Bits  5  and  6  are  01, so set bit  4  to  0  for odd parity. 

 The resulting Hamming code string is  100001. 



 

You can derive the Hamming code strings for the remaining data values.  Here are the 

results. 

 

 Data Hamming code 

 

 000    110100 

 001    100001 

 010    010010 

 011    000111 

 100    001100 

 101    011001 

 110    101010 

 111    111111 

 

Notice that this is the same Hamming code, except for order, as the previous example. 

 

There is a quick way to correct an error in a Hamming code that was derived using parity 

as above.  Suppose  001110  is received.  Find the parity bits that are wrong.  Remember 

that bits  3, 5, and  6  are data bits and the remaining bits are parity bits, and that we are 

using odd parity.  

 

        _0_  _0_  _1_  _1_  _1_  _0_ 
                                1             2            3           4            5           6 

 

 Bits  3  and  5  are  11, so bit  1  should be  1 for odd parity. 

 Bits  3  and  6  are  10, so bit  2  is correct 

 Bits  5  and  6  are  10, so bit  4  should be  0. 

 

Add the numbers of the parity bit positions that are incorrect.  1 + 4 = 5, so data bit  5  is 

incorrect.  The correct code is  001100, corresponding to data  100 .  In general, find the 

bad parity bits and add their locations to find the location of the bad data bit. 

 

Here is the general method to obtain a Hamming code using parity bits.  First, decide on a 

length for the codes.  Above, the length was  6  bits.  Then do the following. 

 All positions that are powers of  2  are parity bits (positions 1, 2, 4, 8, …) 

 The remaining positions are data bits (positions 3, 5, 6, 7, 9, …) 

 Each parity bit checks the parity of some of the data bits.  The position of the 

parity bit determines the bits that it checks.  Alternately check and skip bits as 

follows. 

o Bit 1:  Check and skip bits in groups of  1 (bits 1, 3, 5, 7, 9, …); 

o Bit 2:  Check and skip bits in groups of  2 (bits 2, 3, 6, 7, 10, 11, …); 

o Bit 4:  Check and skip bits in groups of  4 (bits 4, 5, 6, 7, 12, 13, 14, 15, 

20, 21, 22, 23, …), and so on. 

 

Set each parity bit to  0  or  1  to produce the proper parity for the bits it checks.  

 



Suppose all three parity bits are wrong.  For instance, suppose  000000  is received.  All 

three parity bits should be  1, and 1 + 2 + 4 = 7 > 6 !  This indicates that at least two bits 

were changed.  We can detect double errors, but we can’t correct them.  Even worse, it is 

possible that a double error might be corrected erroneously!  Suppose that  100001  is 

transmitted, but  000011  is received. 

 

        _0_  _0_  _0_  _0_  _1_  _1_ 
                                1             2            3           4            5           6 

 

Bits 3 and 5 are  01, so bit 1 is correct. 

Bits 3 and 6 are  01, so bit 2 is correct. 

Bits 5 and 6 are  11, so bit 4 is wrong. 

 

Changing bit 4 produces  000111, which actually has two incorrect bits. 

 

Now consider a  15  bit Hamming code.  Bits 1, 2, 4, and 8 will be parity bits, and the 

remaining 11 bits will hold data. 

 

_p_   _p   _ _   _p   _ _   _ _  ___  _p_  ___  ___  ___  ___  ___  ___  ___  
    1             2           3           4           5           6          7            8           9           10           11          12         13         14          15 

 

Set bit 1 so that bits 1, 3, 5, 7, 9, 11, 13, and 15 will be in odd parity. 

Set bit 2 so that bits 2, 3, 6, 7, 10, 11, 14, and  15 will be in odd parity. 

Set bit 4 so that bits 4, 5, 6, 7, 12, 13, 14, and  15 will be in odd parity. 

Set bit 8 so that bits 8, 9, 10, 11, 12, 13, 14, and  15 will be in odd parity. 

 

For instance, suppose the data bits are  10001011001.  What will be the code for this 

word? 

 

_p_   _p   _1    _p   _0    _0_  _0_  _p_  _1_  _0_  _1_  _1   _0_  _0_  _1_  
    1             2           3           4           5           6            7            8           9           10           11          12        13         14          15 

 

Bits 3, 5, 7, 9, 11, 13, and 15 are  1001101, so set bit 1 to  1  for odd parity. 

Bits 3, 6, 7, 10, 11, 14, and  15 are  1000101, so set bit 2 to  0  for odd parity. 

Bits 5, 6, 7, 12, 13, 14, and  15 are  0001001, so set bit 4 to  1  for odd parity. 

Bits 9, 10, 11, 12, 13, 14, and  15 are  1011001, so set bit 8 to  1  for odd parity. 

 

The result is the Hamming code  101100011011001.  Similarly, we could get the 

Hamming code for any of the other possible combinations of  11  data bits. 



EXERCISES 

 

 

In problems 1 and 2, suppose we are using three bit codes with the legal codes being 000 

and 111.  Assume one bit transmission errors.   

 

1. Which of the following received words are incorrect?  Correct the incorrect 

words.    010, 011, 111, 101 

 

2. Which of the following received words are incorrect?  Correct the incorrect 

words.    110, 000, 100, 110 

 

 

In problems 3 and 4, suppose we are using three bit codes with the legal codes being  010  

and  101.  Assume one bit transmission errors. 

 

3. Which of the following received words are incorrect?  Correct the incorrect 

words.    100, 001, 000, 101 

  

4. Which of the following received words are incorrect?  Correct the incorrect 

words.    100, 010, 011, 110 

 

 

In problems 5 and 6, suppose we are using three bit codes and we can correct single 

transmission errors. 

 

5. Can the following pairs be legal code words?  Explain. 

a. 001, 110 

b. 111, 110 

c. 000, 011 

 

6. Can the following pairs be legal code words?  Explain. 

a. 101, 100 

b. 010, 101 

c. 110, 101 

 

 

7. Suppose we are using three bit codes and the legal codes are  001, 010, 100, 

and 111. 

a. Can we detect single transmission errors? 

b. Can we correct single transmission errors? 

 

8. Suppose we are using three bit codes and the legal codes are  000, 101, 110, 

and 111. 

a. Can we detect single transmission errors? 

b. Can we correct single transmission errors? 



 

 

9. If the minimum Hamming distance between valid codes is 6, 

a. How many errors can be detected? 

b. How many errors can be corrected? 

 

10. If the minimum Hamming distance between valid codes is 7, 

a. How many errors can be detected? 

b. How many errors can be corrected? 

 

 

11. If a code can detect, but not correct, five errors, what is the minimum 

Hamming distance for the code? 

 

12. If a code can detect and correct five errors, what is the minimum Hamming 

distance for the code? 

 

In exercises 13 through 20, use the six bit Hamming code in the text.  Use the symbols A 

through H in the first version of that code as needed. 

 

13. Detect and correct the single bit transmission error in the received string  

010100. 

 

14. Detect and correct the single bit transmission error in the received string  

011011. 

 

In exercises 15 through 20, decode the following messages using the Hamming code, 

correcting transmission errors as necessary, and using the symbols for the results. 

 

15. 001100 110100 101100 

 

16. 111111 010010 

 

17. 010010 001100 

 

18. 111110 110100 111111 010011 

 

19. 011001 011010 011100 

 

20. 111001 110110 001100 

 

21. Find a six bit, single bit error correcting and detecting Hamming code for the data 

values  000, 001, 010, 011, 100, 101, 111  as in the text, except use even parity. 

 



 

In exercises 22 and 23, use the six bit Hamming code with odd parity derived in the text: 

 

 Data Hamming code 

 

 000    110100 

 001    100001 

 010    010010 

 011    000111 

 100    001100 

 101    011001 

 110    101010 

 111    111111 

 

22. Suppose the bit string  010100  is received.  Find and correct the error. 

 

23. Suppose the bit string  011011  is received.  Find and correct the error. 

 

In exercises 24 through 27, use a 15 bit Hamming code with positions 1, 2, 4, and  8  for 

parity, and the other bits for data. 

 

24. Give the Hamming code for the data bits  01001000111  using odd parity. 

 

25. Same as Exercise 24, but use even parity. 

 

26. Give the Hamming code for the data bits  10011011100  using odd parity. 

 

27. Same as Exercise 26, but use even parity. 


